RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 1993, Volume 34, Number 5, Pages 23–37 (Mi smj829)  

Computable classes of constructivizations for models of finite computability type

S. S. Goncharov


Abstract: Computable classes of weak constructivizations are studied for models admitting strong constructivizations. We prove that for strongly constnictivizable models $n$-complete in some finite expansion with constants but $(n+1)$-complete in any expansion with constants, it is possible, given an arbitraty class of constructivizations, to construct effectively a constructivization beyond the class which is not an $(n+1)$-constructivization, i.e., whose $(n+1)$-restricted theory is not decidable in any expansion with constants for indices.

Full text: PDF file (1745 kB)

English version:
Siberian Mathematical Journal, 1993, 34:5, 812–824

Bibliographic databases:

UDC: 517.15
Received: 16.03.1993

Citation: S. S. Goncharov, “Computable classes of constructivizations for models of finite computability type”, Sibirsk. Mat. Zh., 34:5 (1993), 23–37; Siberian Math. J., 34:5 (1993), 812–824

Citation in format AMSBIB
\Bibitem{Gon93}
\by S.~S.~Goncharov
\paper Computable classes of constructivizations for models of finite computability type
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 5
\pages 23--37
\mathnet{http://mi.mathnet.ru/smj829}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1255458}
\zmath{https://zbmath.org/?q=an:0860.03032}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 5
\pages 812--824
\crossref{https://doi.org/10.1007/BF00971397}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993MG83400003}


Linking options:
  • http://mi.mathnet.ru/eng/smj829
  • http://mi.mathnet.ru/eng/smj/v34/i5/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:146
    Full text:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018