Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. матем. журн., 1999, том 40, номер 5, страницы 994–996 (Mi smj85)  

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

Многообразие положительной секционной кривизны с фундаментальной группой $\mathbb Z_3\oplus\mathbb Z_3$

Я. В. Базайкин


Аннотация: Описано свободное изометрическое действие группы $\mathbb Z_3\oplus\mathbb Z_3$ на 7-мерном пространстве Алоффа–Уоллаха $N_{1,1}$ положительной секционной кривизны.
Библиогр. 8.

Полный текст: PDF файл (341 kB)

Англоязычная версия:
Siberian Mathematical Journal, 1999, 40:5, 834–836

Реферативные базы данных:

УДК: 515.165.7
Статья поступила: 30.11.1998

Образец цитирования: Я. В. Базайкин, “Многообразие положительной секционной кривизны с фундаментальной группой $\mathbb Z_3\oplus\mathbb Z_3$”, Сиб. матем. журн., 40:5 (1999), 994–996; Siberian Math. J., 40:5 (1999), 834–836

Цитирование в формате AMSBIB
\RBibitem{Baz99}
\by Я.~В.~Базайкин
\paper Многообразие положительной секционной кривизны с~фундаментальной группой $\mathbb Z_3\oplus\mathbb Z_3$
\jour Сиб. матем. журн.
\yr 1999
\vol 40
\issue 5
\pages 994--996
\mathnet{http://mi.mathnet.ru/smj85}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1726845}
\zmath{https://zbmath.org/?q=an:0931.53017}
\transl
\jour Siberian Math. J.
\yr 1999
\vol 40
\issue 5
\pages 834--836
\crossref{https://doi.org/10.1007/BF02674713}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000083799800003}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/smj85
  • http://mi.mathnet.ru/rus/smj/v40/i5/p994

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Samani E.Kh., “Obstructions to Free Actions on Bazaikin Spaces”, Transform. Groups  crossref  isi  scopus
    2. Fang F.Q., Rong X.C., “Positively curved manifolds with maximal discrete symmetry rank”, American Journal of Mathematics, 126:2 (2004), 227–245  crossref  mathscinet  zmath  isi
    3. Rong X.C., “On fundamental groups of positively curved manifolds with torus actions”, Asian Journal of Mathematics, 9:4 (2005), 545–559  crossref  mathscinet  isi
    4. Rong X.C., Wang Y.S., “Fundamental groups of closed manifolds with positive curvature and torus actions”, Geometriae Dedicata, 113:1 (2005), 165–184  crossref  mathscinet  zmath  isi  scopus
    5. Grove K., Shankar K., Ziller W., “Symmetries of Eschenburg spaces and the Chern problem”, Asian Journal of Mathematics, 10:3 (2006), 647–661  crossref  mathscinet  isi  scopus
    6. Duran C., Puettmann T., “A Minimal Brieskorn 5–Sphere in the Gromoll–Meyer Sphere and Its Applications”, Michigan Mathematical Journal, 56:2 (2008), 419–451  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Fang F., “Finite isometry groups of 4–manifolds with positive sectional curvature”, Mathematische Zeitschrift, 259:3 (2008), 643–656  crossref  mathscinet  zmath  isi  scopus
    8. Sun H., Wang Yu., “Positive sectional curvature, symmetry and Chern's conjecture”, Differential Geometry and Its Applications, 27:1 (2009), 129–136  crossref  mathscinet  zmath  isi  scopus
    9. Kennard L., “Positively Curved Riemannian Metrics With Logarithmic Symmetry Rank Bounds”, Comment. Math. Helv., 89:4 (2014), 937–962  crossref  mathscinet  zmath  isi  scopus
    10. K. Grove, “A panoramic glimpse of manifolds with sectional curvature bounded from below”, Алгебра и анализ, 29:1 (2017), 7–48  mathnet  mathscinet  elib; St. Petersburg Math. J., 29:1 (2018), 3–31  crossref  isi
    11. Kennard L., “Fundamental Groups of Manifolds With Positive Sectional Curvature and Torus Symmetry”, J. Geom. Anal., 27:4 (2017), 2894–2925  crossref  mathscinet  zmath  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Просмотров:
    Эта страница:218
    Полный текст:74
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021