RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2006, Volume 47, Number 2, Pages 414–430 (Mi smj866)  

This article is cited in 5 scientific papers (total in 5 papers)

Topological dimensions for $u$-groups

V. N. Remeslennikova, E. I. Timoshenkob

a Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
b Novosibirsk State University of Architecture and Civil Engineering

Abstract: We study some problems connected with algebraic geometry over a free metabelian group. We introduce the notions of topological dimensions which are based on the lengths of chains of irreducible closed sets, and study these dimensions.

Keywords: algebraic dimension, metabelian group, topological dimension

Full text: PDF file (252 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2006, 47:2, 341–354

Bibliographic databases:

UDC: 512.5
Received: 07.02.2005

Citation: V. N. Remeslennikov, E. I. Timoshenko, “Topological dimensions for $u$-groups”, Sibirsk. Mat. Zh., 47:2 (2006), 414–430; Siberian Math. J., 47:2 (2006), 341–354

Citation in format AMSBIB
\Bibitem{RemTim06}
\by V.~N.~Remeslennikov, E.~I.~Timoshenko
\paper Topological dimensions for $u$-groups
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 2
\pages 414--430
\mathnet{http://mi.mathnet.ru/smj866}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2227987}
\zmath{https://zbmath.org/?q=an:1115.20021}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 2
\pages 341--354
\crossref{https://doi.org/10.1007/s11202-006-0047-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000236747400013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645325923}


Linking options:
  • http://mi.mathnet.ru/eng/smj866
  • http://mi.mathnet.ru/eng/smj/v47/i2/p414

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Daniyarova E., Myasnikov A., Remeslennikov V., “Unification theorems in algebraic geometry”, Aspects of Infinite Groups, Algebra and Discrete Mathematics, 1, 2008, 80–111  crossref  mathscinet  zmath  isi
    2. Myasnikov A., Romanovskiy N., “Krull dimension of solvable groups”, J Algebra, 324:10 (2010), 2814–2831  crossref  mathscinet  zmath  isi  elib  scopus
    3. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. II. Foundations”, J. Math. Sci., 185:3 (2012), 389–416  mathnet  crossref
    4. Guyot L., “Limits of Metabelian Groups”, Int. J. Algebr. Comput., 22:4 (2012), 1250031  crossref  mathscinet  zmath  isi  elib  scopus
    5. Daniyarova Evelina Yur'evna Myasnikov A.G. Remeslennikov V.N., “Algebraic Geometry Over Algebraic Structures X: Ordinal Dimension”, Int. J. Algebr. Comput., 28:8, SI (2018), 1425–1448  crossref  mathscinet  zmath  isi  scopus
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:179
    Full text:61
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021