Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirsk. Mat. Zh., 2006, Volume 47, Number 6, Pages 1323–1341 (Mi smj937)  

This article is cited in 1 scientific paper (total in 1 paper)

Large deviations of the first passage time for a random walk with semiexponentially distributed jumps

A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Suppose that $\xi,\xi(1),\xi(2),…$ are independent identically distributed random variables such that $-\xi$ is semiexponential; i.e., $\mathbf P(-\xi\geqslant t)=e^{-t^{\beta}L(t)}$, $\beta\in(0,1)$, $L(t)$ is a slowly varying function as $t\to\infty$ possessing some smoothness properties. Let $\mathbf E\xi=0$, $\mathbf D\xi=1$, and $S(k)=\xi(1)+…+\xi(k)$. Given $d>0$, define the first upcrossing time $\eta+(u)=\inf\{k\geqslant1:S(k)+kd>u\}$ at nonnegative level $u\geqslant0$ of the walk $S(k)+kd$ with positive drift $\d>0$. We prove that, under general conditions, the following relation is valid for $n\to\infty$ and for $u=u(n)\in[0,dn-N_n\sqrt{n}]$:
\begin{equation*} \mathbf P(\eta_+(u)>n)\thicksim\frac{\mathbf E_{\eta_+}(u)}{n}\mathbf P(S(n)\leqslant x), \tag{0.1} \end{equation*}
where $x=u-nd<0$ and an arbitrary fixed sequence $N_n$ not exceeding $d\sqrt{n}$ tends to $\infty$.
The conditions under which we prove (0.1) coincide exactly with the conditions under which the asymptotic behavior of the probability $\mathbf P(S(n)\leqslant x)$ for $x\leqslant-\sqrt{n}$ (for $x\in[-\sqrt{n},0]$ it follows from the central limit theorem).

Keywords: one-dimensional random walk, first passage time, large deviation, semiexponential distribution, integro-local theorem, integral theorem, deviation function, segment of the Cramér series

Full text: PDF file (306 kB)
References: PDF file   HTML file

English version:
Siberian Mathematical Journal, 2006, 47:6, 1084–1101

Bibliographic databases:

UDC: 519.21
Received: 27.02.2006

Citation: A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Sibirsk. Mat. Zh., 47:6 (2006), 1323–1341; Siberian Math. J., 47:6 (2006), 1084–1101

Citation in format AMSBIB
\Bibitem{Mog06}
\by A.~A.~Mogul'skii
\paper Large deviations of the first passage time for a random walk with semiexponentially distributed jumps
\jour Sibirsk. Mat. Zh.
\yr 2006
\vol 47
\issue 6
\pages 1323--1341
\mathnet{http://mi.mathnet.ru/smj937}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2302848}
\zmath{https://zbmath.org/?q=an:1150.60006}
\transl
\jour Siberian Math. J.
\yr 2006
\vol 47
\issue 6
\pages 1084--1101
\crossref{https://doi.org/10.1007/s11202-006-0117-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000243454700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845500940}


Linking options:
  • http://mi.mathnet.ru/eng/smj937
  • http://mi.mathnet.ru/eng/smj/v47/i6/p1323

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Mogulskii, “Integralnye i integro-lokalnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. elektron. matem. izv., 6 (2009), 251–271  mathnet  mathscinet  elib
  • Сибирский математический журнал Siberian Mathematical Journal
    Number of views:
    This page:273
    Full text:70
    References:45

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021