|
Sovrem. Probl. Mat., 2004, Issue 5, Pages 3–67
(Mi spm8)
|
|
|
|
This article is cited in 10 scientific papers (total in 11 papers)
On Padé Approximants of Meromorphic Functions of Markov Type
A. A. Gonchar, S. P. Suetin
Abstract:
The paper is devoted to the asymptotic properties of diagonal Padé approximants for Markov-type meromorphic functions. The main result is strong asymptotic formulas for the denominators of diagonal Padé approximants for Markov-type meromorphic functions $f=\widehat\sigma+r$ under additional constraints on the measure $\sigma$ ($r$ is a rational function). On the basis of these formulas, it is proved that, in a sufficiently small neighborhood of a pole of multiplicity $m$ of such a meromorphic function $f$, all poles of the diagonal Padé approximants $f_n$ are simple and asymptotically located at the vertices of a regular $m$-gon.
DOI:
https://doi.org/10.4213/spm8
Full text:
PDF file (534 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, 272, suppl. 2, S58–S95
Bibliographic databases:
UDC:
517.53
Citation:
A. A. Gonchar, S. P. Suetin, “On Padé Approximants of Meromorphic Functions of Markov Type”, Sovrem. Probl. Mat., 5, Steklov Math. Institute of RAS, Moscow, 2004, 3–67; Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S58–S95
Citation in format AMSBIB
\Bibitem{GonSue04}
\by A.~A.~Gonchar, S.~P.~Suetin
\paper On Pad\'e Approximants of Meromorphic Functions of Markov Type
\serial Sovrem. Probl. Mat.
\yr 2004
\vol 5
\pages 3--67
\publ Steklov Math. Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/spm8}
\crossref{https://doi.org/10.4213/spm8}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141293}
\zmath{https://zbmath.org/?q=an:1089.30036|06287507}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 272
\issue , suppl. 2
\pages S58--S95
\crossref{https://doi.org/10.1134/S0081543811030059}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000289527600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954576357}
Linking options:
http://mi.mathnet.ru/eng/spm8https://doi.org/10.4213/spm8 http://mi.mathnet.ru/eng/spm/v5/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. P. Suetin, “Spectral properties of a class of discrete Sturm–Liouville operators”, Russian Math. Surveys, 61:2 (2006), 365–367
-
S. P. Suetin, “Comparative Asymptotic Behavior of Solutions and Trace Formulas for a Class of Difference Equations”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S96–S137
-
S. P. Suetin, “Trace formulae for a class of Jacobi operators”, Sb. Math., 198:6 (2007), 857–885
-
S. P. Suetin, “Strong asymptotics of zeros of polynomials orthogonal with respect to a complex-valued weight”, Russian Math. Surveys, 62:4 (2007), 823–825
-
L. A. Knizhnerman, “Gauss–Arnoldi quadrature for $\langle(zI-A)^{-1}\varphi,\varphi\rangle$ and rational Padé-type approximation for Markov-type functions”, Sb. Math., 199:2 (2008), 185–206
-
S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to
a complex weight”, Sb. Math., 200:1 (2009), 77–93
-
Alphonse P. Magnus, “Elliptic Hypergeometric Solutions to Elliptic Difference Equations”, SIGMA, 5 (2009), 038, 12 pp.
-
V. A. Kalyagin, A. A. Kononova, “On Compact Perturbations of the Limit-Periodic Jacobi Operator”, Math. Notes, 86:6 (2009), 789–800
-
A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131
-
A. I. Aptekarev, G. López Lagomasino, E. B. Saff, V. Totik, H. Stahl, “Andrei Aleksandrovich Gonchar (on his 80th birthday)”, Russian Math. Surveys, 66:6 (2011), 1209–1216
-
N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, “Nuttall's integral equation and Bernshtein's asymptotic formula for a complex weight”, Izv. Math., 79:6 (2015), 1215–1234
|
Number of views: |
This page: | 671 | Full text: | 228 | References: | 39 |
|