RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Sci. Rep., 2020, том 10, 1195, 10 страниц (Mi sr1)  

Uncomputability and complexity of quantum control

Denys I. Bondara, Alexander N. Pechenbc

a Tulane University, New Orleans, LA 70118, USA
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow 119991, Russia
c National University of Science and Technology "MISIS", Moscow 119049, Russia

Аннотация: In laboratory and numerical experiments, physical quantities are known with a fnite precision and described by rational numbers. Based on this, we deduce that quantum control problems both for open and closed systems are in general not algorithmically solvable, i.e., there is no algorithm that can decide whether dynamics of an arbitrary quantum system can be manipulated by accessible external interactions (coherent or dissipative) such that a chosen target reaches a desired value. This conclusion holds even for the relaxed requirement of the target only approximately attaining the desired value. These fndings do not preclude an algorithmic solvability for a particular class of quantum control problems. Moreover, any quantum control problem can be made algorithmically solvable if the set of accessible interactions (i.e., controls) is rich enough. To arrive at these results, we develop a technique based on establishing the equivalence between quantum control problems and Diophantine equations, which are polynomial equations with integer coefcients and integer unknowns. In addition to proving uncomputability, this technique allows to construct quantum control problems belonging to diferent complexity classes. In particular, an example of the control problem involving a two-mode coherent feld is shown to be NP-hard, contradicting a widely held believe that two-body problems are easy.

Финансовая поддержка Номер гранта
Российский научный фонд 17-11-01388
Humboldt Research Fellowship for Experienced Researchers
Army Research Office W911NF-19-1-0377
Defense Advanced Research Projects Agency D19AP00043
Министерство науки и высшего образования Российской Федерации 1.669.2016/1.4
The results for uncomputability and complexity of controlling open quantum systems are obtained with the support of the RSF project 17-11-01388 at Steklov Mathematical Institute. The rest is supported by the Humboldt Research Fellowship for Experienced Researchers, the Army Research Oce (ARO) (grant W911NF-19-1-0377), and Defense Advanced Research Projects Agency (DARPA) (grant D19AP00043) for D.I.B. and by project 1.669.2016/1.4 of the Ministry of Science and Higher Education of the Russian Federation for A.P.


DOI: https://doi.org/10.1038/s41598-019-56804-1


Реферативные базы данных:

ArXiv: 1907.10082
Тип публикации: Статья
Язык публикации: английский

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/sr1

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Доклады по теме:
  • Просмотров:
    Эта страница:28
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020