RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Inform., 2017, Volume 27, Issue 4, Pages 164–176 (Mi ssi552)  

This article is cited in 8 scientific papers (total in 8 papers)

Methods of frequency analysis of connectives translations and reversibility of statistical data generalization

I. M. Zatsman, M. G. Kruzhkov, E. Ju. Loshchilova

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation

Abstract: The methods of Russian connectives frequency analysis are examined, including analysis of their translation models in Russian–French parallel texts. The parallel texts are integrated into a supracorpora database (SCDB) which also includes bilingual annotations of translation correspondences. The annotations include properties of the examined linguistic items (Russian connectives) and, at the same time, properties of the corresponding linguistic items found in the translation. These properties are organized as a faceted classification in the SCDB describing the translation models found in the SCDB from various perspectives. A characteristic feature of the connectives translations frequency analysis methods implemented in the SCDB is the reversibility of the calculated statistical data, meaning that the calculated frequency values act as hyperlinks to the lists of the annotations those values are based on, which represent occurrences of the corresponding connectives in the parallel texts of the SCDB. The use of faceted classifications in the SCDB allows for multidimensional statistical analysis of the annotated connectives and translation models. The calculated statistical data are verifiable because they allow tracing the given values directly to the annotations they are based on. The main goal of this paper is to describe methods of frequency analysis of connectives translation models, including those that support the reversibility of the calculated statistical data on different generalization levels.

Keywords: supracorpora database; translation models; annotation of translation models; faceted classifications; corpus linguistics; generalization; reversibility of generalization process.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-06-00070_а
This research was performed at the Institute of Informatics Problems, Federal Research Center \Computer Science and Control" of the Russian Academy of Sciences, and partially supported by the Russian Foundation for Basic Research (grant No. 16-06-00070).


DOI: https://doi.org/10.14357/08696527170413

Full text: PDF file (217 kB)
References: PDF file   HTML file

Received: 15.09.2017

Citation: I. M. Zatsman, M. G. Kruzhkov, E. Ju. Loshchilova, “Methods of frequency analysis of connectives translations and reversibility of statistical data generalization”, Sistemy i Sredstva Inform., 27:4 (2017), 164–176

Citation in format AMSBIB
\Bibitem{ZatKruLos17}
\by I.~M.~Zatsman, M.~G.~Kruzhkov, E.~Ju.~Loshchilova
\paper Methods of frequency analysis of connectives translations and reversibility of statistical data generalization
\jour Sistemy i Sredstva Inform.
\yr 2017
\vol 27
\issue 4
\pages 164--176
\mathnet{http://mi.mathnet.ru/ssi552}
\crossref{https://doi.org/10.14357/08696527170413}
\elib{http://elibrary.ru/item.asp?id=30562408}


Linking options:
  • http://mi.mathnet.ru/eng/ssi552
  • http://mi.mathnet.ru/eng/ssi/v27/i4/p164

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Nikishin, “Sopostavlenie osobennostei predstavleniya geodannykh v kartografii i v geoinformatike”, Sistemy i sredstva inform., 28:2 (2018), 60–74  mathnet  crossref  elib
    2. I. M. Zatsman, “Metodologiya obratimoi generalizatsii v kontekste klassifikatsii informatsionnykh transformatsii”, Sistemy i sredstva inform., 28:2 (2018), 128–144  mathnet  crossref  elib
    3. N. V. Buntman, I. M. Zatsman, V. A. Nuriev, A. A. Goncharov, “Kolichestvennyi analiz rezultatov mashinnogo perevoda s ispolzovaniem nadkorpusnykh baz dannykh”, Inform. i ee primen., 12:4 (2018), 96–105  mathnet  crossref  elib
    4. I. M. Zatsman, “Stadii tselenapravlennogo izvlecheniya znanii, implitsirovannykh v parallelnykh tekstakh”, Sistemy i sredstva inform., 28:3 (2018), 175–188  mathnet  crossref  elib
    5. D. A. Nikishin, “Protsessy generalizatsii v analogovoi i tsifrovoi kartografii”, Sistemy i sredstva inform., 28:3 (2018), 204–216  mathnet  crossref  elib
    6. I. M. Zatsman, M. G. Kruzhkov, “Nadkorpusnaya baza dannykh konnektorov: razvitie sistemy terminov proektirovaniya”, Sistemy i sredstva inform., 28:4 (2018), 156–167  mathnet  crossref  elib
    7. M. G. Kruzhkov, O. Yu. Inkova, “Metod opisaniya struktury neodnoslovnykh konnektorov v nadkorpusnykh bazakh dannykh”, Sistemy i sredstva inform., 28:4 (2018), 168–181  mathnet  crossref  elib
    8. I. M. Zatsman, “Tselenapravlennoe razvitie sistem lingvisticheskikh znanii: vyyavlenie i zapolnenie lakun”, Inform. i ee primen., 13:1 (2019), 91–98  mathnet  crossref  elib
  • Системы и средства информатики
    Number of views:
    This page:96
    Full text:21
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019