RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. по дискр. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Тр. по дискр. матем., 2007, том 10, страницы 47–72 (Mi tdm160)  

Использование колец вычетов целых алгебраических чисел для построения криптографических систем с открытым ключом

М. М. Глухов


Аннотация: Описывается кольцо целых алгебраических чисел поля $\mathbf Q(\root4\of{D})$, где $D$ – натуральное число, свободное от квадратов и отличное от 1. Изучаются свойства его факторкольца по идеалу $(m)$, где $m$ – простое число или произведение двух простых чисел, и мультипликативной группы этого фактор-кольца, предлагается криптосхема типа RSA, основанная на использовании кольца $\mathbf Z(\root4\of{D})$.

Полный текст: PDF файл (1281 kB)

Образец цитирования: М. М. Глухов, “Использование колец вычетов целых алгебраических чисел для построения криптографических систем с открытым ключом”, Тр. по дискр. матем., 10, Физматлит, М., 2007, 47–72

Цитирование в формате AMSBIB
\RBibitem{Glu07}
\by М.~М.~Глухов
\paper Использование колец вычетов целых алгебраических чисел для построения криптографических систем с~открытым ключом
\serial Тр. по дискр. матем.
\yr 2007
\vol 10
\pages 47--72
\publ Физматлит
\publaddr М.
\mathnet{http://mi.mathnet.ru/tdm160}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tdm160
  • http://mi.mathnet.ru/rus/tdm/v10/p47

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:506
    Полный текст:119
    Первая стр.:16
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020