RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory Stoch. Process., 2008, Volume 14(30), Issue 1, Pages 95–99 (Mi thsp133)  

Certain properties of triangular transformations of measures

Kirill V. Medvedev

Faculty of Mechanics and Mathematics Moscow State University, Moscow 119992, Russia

Abstract: We study the convergence of triangular mappings on ${\mathbb R}^n,$ i.e., mappings $T$ such that the $i$th coordinate function $T_i$ depends only on the variables $x_1,\ldots,x_i.$ Weshow that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations.

Funding Agency Grant Number
Deutsche Forschungsgemeinschaft 436 RUS 113/343/0(R)
Partially supported by the RFBR projects 07-01-00536 and GFEN-06-01-39003, the DFG grant 436 RUS 113/343/0(R), and the INTAS project 05-109-4856.


Full text: PDF file (192 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 28C20, 46G12, 60B11
Language:

Citation: Kirill V. Medvedev, “Certain properties of triangular transformations of measures”, Theory Stoch. Process., 14(30):1 (2008), 95–99

Citation in format AMSBIB
\Bibitem{Med08}
\by Kirill~V.~Medvedev
\paper Certain properties of triangular
transformations of measures
\jour Theory Stoch. Process.
\yr 2008
\vol 14(30)
\issue 1
\pages 95--99
\mathnet{http://mi.mathnet.ru/thsp133}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2479710}
\zmath{https://zbmath.org/?q=an:1199.28047}


Linking options:
  • http://mi.mathnet.ru/eng/thsp133
  • http://mi.mathnet.ru/eng/thsp/v14/i1/p95

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Theory of Stochastic Processes
    Number of views:
    This page:66
    Full text:33
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021