RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory Stoch. Process., 2007, Volume 13(29), Issue 4, Pages 233–246 (Mi thsp249)  

Strong invariance principle for renewal and randomly stopped processes

Nadiia Zinchenko

Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine

Abstract: The strong invariance principle for renewal process and randomly stopped sums when summands belong to the domain of attraction of an $\alpha$-stable law is presented

Keywords: Lévy processes, stable processes, invariance principle, domain of attraction,renewal process, randomly stopped process, risk models.

Full text: PDF file (147 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 60F17, 60F15, 60G52, 60G50
Language:

Citation: Nadiia Zinchenko, “Strong invariance principle for renewal and randomly stopped processes”, Theory Stoch. Process., 13(29):4 (2007), 233–246

Citation in format AMSBIB
\Bibitem{Zin07}
\by Nadiia~Zinchenko
\paper Strong invariance principle for
renewal and randomly stopped
processes
\jour Theory Stoch. Process.
\yr 2007
\vol 13(29)
\issue 4
\pages 233--246
\mathnet{http://mi.mathnet.ru/thsp249}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2482263}
\zmath{https://zbmath.org/?q=an:1164.60019}


Linking options:
  • http://mi.mathnet.ru/eng/thsp249
  • http://mi.mathnet.ru/eng/thsp/v13/i4/p233

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Theory of Stochastic Processes
    Number of views:
    This page:38
    Full text:28
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021