RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2011, Volume 19, Number 1, Pages 22–31 (Mi timb136)  

Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel

A. P. Grinko

A. S. Pushkin Brest State University

Abstract: The properties of the fractional type integral operator with Kummer's confluent hypergeometric function in the kernel are studied. Composition formula and explicit form of the inverse integral operator are obtained. The latter generalizes fractional derivatives of Riemann–Liouville and Marchaud type. New integral representation of confluent Kummer's hypergeometric function is proved.

Full text: PDF file (173 kB)
References: PDF file   HTML file
UDC: 517.444
Received: 17.11.2010

Citation: A. P. Grinko, “Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel”, Tr. Inst. Mat., 19:1 (2011), 22–31

Citation in format AMSBIB
\Bibitem{Gri11}
\by A.~P.~Grinko
\paper Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel
\jour Tr. Inst. Mat.
\yr 2011
\vol 19
\issue 1
\pages 22--31
\mathnet{http://mi.mathnet.ru/timb136}


Linking options:
  • http://mi.mathnet.ru/eng/timb136
  • http://mi.mathnet.ru/eng/timb/v19/i1/p22

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:210
    Full text:156
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020