RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2011, Volume 19, Number 1, Pages 85–91 (Mi timb142)  

On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs

T. V. Lubasheva, Yu. M. Metelsky

Belarusian State University

Abstract: Let $L^l(k)$ be the class of graphs with equivalence partition number at most $k$. In this paper the class of polar graphs is represented as the union of classes in each of them the problem of existence of finite characterization in terms of forbidden induced subgraphs for the class $L^l(k)$ is solved. Thus, in particular, for any fixed integers $k\ge3$ and $\alpha,\beta\in\mathbb N\cup\{\infty\}$, a complete description of finite characterizability for the class $L^l(k)$ in the classes of $(\alpha,\beta)$-polar graphs is obtained.

Full text: PDF file (192 kB)
References: PDF file   HTML file
UDC: 519.1
Received: 23.09.2010

Citation: T. V. Lubasheva, Yu. M. Metelsky, “On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs”, Tr. Inst. Mat., 19:1 (2011), 85–91

Citation in format AMSBIB
\Bibitem{LubMet11}
\by T.~V.~Lubasheva, Yu.~M.~Metelsky
\paper On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
\jour Tr. Inst. Mat.
\yr 2011
\vol 19
\issue 1
\pages 85--91
\mathnet{http://mi.mathnet.ru/timb142}


Linking options:
  • http://mi.mathnet.ru/eng/timb142
  • http://mi.mathnet.ru/eng/timb/v19/i1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:114
    Full text:102
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020