RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2011, Volume 19, Number 2, Pages 37–46 (Mi timb149)  

Matrix exponents and nilpotent algebras

P. P. Zabreiko, A. N. Tanyhina

Belarusian State University

Abstract: The differentiable at zero function $f$ acting in the matrix algebra $\mathrm M_n(\mathbb C)$ ($n\in\mathbb N$, $n>1$) with the properties $f(X+Y)=f(X)f(Y)$ and $f(0)=I$ is studied. The theorems about the general form of such functions are proved.

Full text: PDF file (198 kB)
References: PDF file   HTML file
UDC: 517.965+512.71
Received: 14.09.2011

Citation: P. P. Zabreiko, A. N. Tanyhina, “Matrix exponents and nilpotent algebras”, Tr. Inst. Mat., 19:2 (2011), 37–46

Citation in format AMSBIB
\Bibitem{ZabTan11}
\by P.~P.~Zabreiko, A.~N.~Tanyhina
\paper Matrix exponents and nilpotent algebras
\jour Tr. Inst. Mat.
\yr 2011
\vol 19
\issue 2
\pages 37--46
\mathnet{http://mi.mathnet.ru/timb149}


Linking options:
  • http://mi.mathnet.ru/eng/timb149
  • http://mi.mathnet.ru/eng/timb/v19/i2/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:325
    Full text:137
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020