|
Classification of symbols of three-dimensional vector distributions of infinite type
O. Yu. Radko Institute of Mathematics of the National Academy of Sciences of Belarus
Abstract:
We consider non-degenerate fundamental Lie algebras $\mathfrak{m}$ of infinite type over an arbitrary field of zero characteristic that can be uniquely represented as special extensions $0\to\mathfrak{a}\to\mathfrak{m}\to\mathfrak{n}\to0$, where all homogeneous components of $\mathfrak{a}$ are of dimension one. We provide explicit description of all such extensions in cases when $\mathfrak{n}$ is either a contact Lie algebra of dimension $\ge3$ or five-dimensional nilpotent Lie algebra of type $G_2$. In particular, get all fundamental Lie algebras $\mathfrak{m}$ of infinite type with $\dim\mathfrak{m}_{-1}=3$ and $\dim\mathfrak{n}\le5$. This covers all such Lie algebras $\mathfrak{m}$ that $\dim\mathfrak{m}\le 7$.
Full text:
PDF file (195 kB)
References:
PDF file
HTML file
UDC:
512.818.4, 514.763.8 Received: 01.10.2011
Citation:
O. Yu. Radko, “Classification of symbols of three-dimensional vector distributions of infinite type”, Tr. Inst. Mat., 20:1 (2012), 83–95
Citation in format AMSBIB
\Bibitem{Rad12}
\by O.~Yu.~Radko
\paper Classification of symbols of three-dimensional vector distributions of infinite type
\jour Tr. Inst. Mat.
\yr 2012
\vol 20
\issue 1
\pages 83--95
\mathnet{http://mi.mathnet.ru/timb165}
Linking options:
http://mi.mathnet.ru/eng/timb165 http://mi.mathnet.ru/eng/timb/v20/i1/p83
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 169 | Full text: | 61 | References: | 14 |
|