RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2012, Volume 20, Number 2, Pages 84–92 (Mi timb176)  

Tonkov generalization of the stability of the Lyapunov exponents of linear differential system with a special matrix Cauchy

N. S. Niparko

Belarusian State Agrarian Technical University, Minsk

Abstract: The sufficient condition for the stability of the Lyapunov exponents of a linear differential system with piecewise continuous bounded on the time axis coefficients, Cauchy matrix of which is an upper triangular matrix in the neighboring points of a monotone increasing to $+\infty$ the sequence.

Full text: PDF file (170 kB)
References: PDF file   HTML file
UDC: 517.926.4+517.977
Received: 19.11.2012

Citation: N. S. Niparko, “Tonkov generalization of the stability of the Lyapunov exponents of linear differential system with a special matrix Cauchy”, Tr. Inst. Mat., 20:2 (2012), 84–92

Citation in format AMSBIB
\Bibitem{Nip12}
\by N.~S.~Niparko
\paper Tonkov generalization of the stability of the Lyapunov exponents of linear differential system with a special matrix Cauchy
\jour Tr. Inst. Mat.
\yr 2012
\vol 20
\issue 2
\pages 84--92
\mathnet{http://mi.mathnet.ru/timb176}


Linking options:
  • http://mi.mathnet.ru/eng/timb176
  • http://mi.mathnet.ru/eng/timb/v20/i2/p84

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:139
    Full text:57
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020