RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2013, Volume 21, Number 1, Pages 78–87 (Mi timb188)  

This article is cited in 1 scientific paper (total in 1 paper)

On biclique covering number of the Cartesian product of graphs

V. V. Lepin, O. I. Duginov

Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: The paper is dealt with the biclique cover number (i.e. minimal number of complete bipartite subgraphs of a graph needed to cover the edge set of the graph) of the Cartesian product of two graphs. It is obtained upper bounds on the biclique cover number for the Cartesian product of graphs. It is given the formula for exact value of the biclique cover number for the Cartesian product of $P_n$ and $K_2$$C_n$ and $K_2$$P_n$ and $P_n$.

Full text: PDF file (380 kB)
References: PDF file   HTML file
UDC: 519.1
Received: 10.01.2013

Citation: V. V. Lepin, O. I. Duginov, “On biclique covering number of the Cartesian product of graphs”, Tr. Inst. Mat., 21:1 (2013), 78–87

Citation in format AMSBIB
\Bibitem{LepDug13}
\by V.~V.~Lepin, O.~I.~Duginov
\paper On biclique covering number of the Cartesian product of graphs
\jour Tr. Inst. Mat.
\yr 2013
\vol 21
\issue 1
\pages 78--87
\mathnet{http://mi.mathnet.ru/timb188}


Linking options:
  • http://mi.mathnet.ru/eng/timb188
  • http://mi.mathnet.ru/eng/timb/v21/i1/p78

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Lepin, O. I. Duginov, “Zadachi i invarianty, svyazannye s biklikami i multiklikami grafa”, Tr. In-ta matem., 21:2 (2013), 103–127  mathnet
  • Труды Института математики
    Number of views:
    This page:244
    Full text:80
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020