RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2014, Volume 22, Number 1, Pages 24–34 (Mi timb206)  

This article is cited in 1 scientific paper (total in 1 paper)

Optimal Banach function space generated with the cone of nonnegative increasing functions

M. L. Goldmanab, P. P. Zabreikoab

a Peoples Friendship University of Russia, Moscow
b Belarusian State University, Minsk

Abstract: The article deals with the effective constructions for the optimal Banach ideal and symmetric spaces (of functions $f: [0,T]\to\mathbb{R}$) containing a cone of nonnegative and increasingly monotone functions with respect to the natural functional generated $L_p$-norm ($1\le p<\infty$). The first of these spaces turns out to be the space of measurable functions $f$ such that $\|f\|_{L_\infty(\cdot,T)}\in L_p(0,T)$; this space can be endowed with the norm $\| \|f\|_{L_\infty(\cdot,T)}\|f\|_{L_p(0,T)}$. The second coincides with the usual space $L_p$.

Full text: PDF file (291 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.51
Received: 24.04.2014

Citation: M. L. Goldman, P. P. Zabreiko, “Optimal Banach function space generated with the cone of nonnegative increasing functions”, Tr. Inst. Mat., 22:1 (2014), 24–34

Citation in format AMSBIB
\Bibitem{GolZab14}
\by M.~L.~Goldman, P.~P.~Zabreiko
\paper Optimal Banach function space generated with the cone of nonnegative increasing functions
\jour Tr. Inst. Mat.
\yr 2014
\vol 22
\issue 1
\pages 24--34
\mathnet{http://mi.mathnet.ru/timb206}


Linking options:
  • http://mi.mathnet.ru/eng/timb206
  • http://mi.mathnet.ru/eng/timb/v22/i1/p24

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Orlov, “Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone”, Math. Notes, 102:3 (2017), 361–368  mathnet  crossref  crossref  mathscinet  isi  elib
  • Труды Института математики
    Number of views:
    This page:138
    Full text:65
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019