RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2010, Volume 18, Number 2, Pages 93–98 (Mi timb21)  

On simple linear differential systems with an even matrix

E. V. Musafirov

Polesskiy State University

Abstract: Conditions of simplicity of linear differential systems with an even coefficient matrix are obtained. Fundamental matrixes of solutions of linear differential systems $\dot{x}=2P(t)x$ and $\dot{x}=-2P(-t)x$ are expressed by means of reflective matrix $F(t)$ of simple system $\dot{x}=P(t)x$, $t\in\mathbb{R}$, $x\in\mathbb{R}^n$. Fundamental matrixes of solutions of systems $\dot{x}=-2kP(t)x$, $k\in\mathbb{Z}$ and $\dot{x}=-2P(t)x+\dot{P}(t)P^{-1}(t)x$ are also expressed by means of $F(t)$ under condition of evenness of matrix $P(t)$. Equivalence (in terms of coincidence of reflective functions) of last system and a simple system $\dot{x}=-2P(t)x$ with an even coefficient matrix is proved.

Full text: PDF file (199 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.926.7
Received: 09.03.2010

Citation: E. V. Musafirov, “On simple linear differential systems with an even matrix”, Tr. Inst. Mat., 18:2 (2010), 93–98

Citation in format AMSBIB
\Bibitem{Mus10}
\by E.~V.~Musafirov
\paper On simple linear differential systems with an even matrix
\jour Tr. Inst. Mat.
\yr 2010
\vol 18
\issue 2
\pages 93--98
\mathnet{http://mi.mathnet.ru/timb21}
\zmath{https://zbmath.org/?q=an:05863494}


Linking options:
  • http://mi.mathnet.ru/eng/timb21
  • http://mi.mathnet.ru/eng/timb/v18/i2/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:150
    Full text:110
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020