RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2014, Volume 22, Number 1, Pages 98–106 (Mi timb211)  

New implementation of the FD-method for Sturm–Liouville problems with Dirichlet–Neumann boundary conditions

V. L. Makarov, N. N. Romaniuk

Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev

Abstract: A new algorithm of the FD-method is proposed for solving Sturm–Liouville problems on an interval with Dirichlet–Neumann boundary conditions where the potential is a polynomial. A software implementation of the algorithm using a computer algebra software package shows its high efficiency.

Full text: PDF file (271 kB)
References: PDF file   HTML file
UDC: 519.624.2
Received: 26.03.2014

Citation: V. L. Makarov, N. N. Romaniuk, “New implementation of the FD-method for Sturm–Liouville problems with Dirichlet–Neumann boundary conditions”, Tr. Inst. Mat., 22:1 (2014), 98–106

Citation in format AMSBIB
\Bibitem{MakRom14}
\by V.~L.~Makarov, N.~N.~Romaniuk
\paper New implementation of the FD-method for Sturm--Liouville problems with Dirichlet--Neumann boundary conditions
\jour Tr. Inst. Mat.
\yr 2014
\vol 22
\issue 1
\pages 98--106
\mathnet{http://mi.mathnet.ru/timb211}


Linking options:
  • http://mi.mathnet.ru/eng/timb211
  • http://mi.mathnet.ru/eng/timb/v22/i1/p98

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:158
    Full text:69
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020