RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2014, Volume 22, Number 2, Pages 3–8 (Mi timb215)  

This article is cited in 1 scientific paper (total in 1 paper)

On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial

V. I. Bernik, D. V. Vasiliev, A. S. Kudin

Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: In the article are obtained upper estimations for the number of integral polynomials of arbitrarily degree and bounded height with small values of derivatives at the root of polynomials.

Full text: PDF file (255 kB)
References: PDF file   HTML file
UDC: 511.42
Received: 03.10.2014

Citation: V. I. Bernik, D. V. Vasiliev, A. S. Kudin, “On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial”, Tr. Inst. Mat., 22:2 (2014), 3–8

Citation in format AMSBIB
\Bibitem{BerVasKud14}
\by V.~I.~Bernik, D.~V.~Vasiliev, A.~S.~Kudin
\paper On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
\jour Tr. Inst. Mat.
\yr 2014
\vol 22
\issue 2
\pages 3--8
\mathnet{http://mi.mathnet.ru/timb215}


Linking options:
  • http://mi.mathnet.ru/eng/timb215
  • http://mi.mathnet.ru/eng/timb/v22/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. L. Bezrukov, “Zavisimosti chisla tselochislennykh mnogochlenov ot ogranichenii znachenii proizvodnoi v $p$-adicheskom i deistvitelnom kornyakh mnogochlena”, Tr. In-ta matem., 25:2 (2017), 6–10  mathnet
  • Труды Института математики
    Number of views:
    This page:158
    Full text:59
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019