RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2016, Volume 24, Number 1, Pages 95–99 (Mi timb262)  

On finite solvable groups with bicyclic cofactors of primary subgroups

A. A. Trofimuk, D. D. Daudov

A. S. Pushkin Brest State University

Abstract: Finite soluble groups with bicyclic cofactors of primary subgroups are investigated. It is proved that the derived length of $G/\Phi(G)$ is at most $6,$ the nilpotent length of $G$ is at most $4,$ $\{2,3\}'$-Hall subgroup of $G$ possesses an ordered Sylow tower of supersolvable type and normal in $G$.

Full text: PDF file (248 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 512.542
Received: 17.03.2016

Citation: A. A. Trofimuk, D. D. Daudov, “On finite solvable groups with bicyclic cofactors of primary subgroups”, Tr. Inst. Mat., 24:1 (2016), 95–99

Citation in format AMSBIB
\Bibitem{TroDau16}
\by A.~A.~Trofimuk, D.~D.~Daudov
\paper On finite solvable groups with bicyclic cofactors of primary subgroups
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 1
\pages 95--99
\mathnet{http://mi.mathnet.ru/timb262}


Linking options:
  • http://mi.mathnet.ru/eng/timb262
  • http://mi.mathnet.ru/eng/timb/v24/i1/p95

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:76
    Full text:16
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019