RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2017, Volume 25, Number 1, Pages 93–96 (Mi timb271)  

The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold

M. V. Shchukin

Belarusian National Technical University

Abstract: Every $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold can be realized as algebra of all continuous sections for the appropriate algebraic bundle. In the work we prove that such algebra can be generated by three idempotent elements from the algebra.

Full text: PDF file (257 kB)
References: PDF file   HTML file
UDC: 517.986
Received: 26.01.2017

Citation: M. V. Shchukin, “The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold”, Tr. Inst. Mat., 25:1 (2017), 93–96

Citation in format AMSBIB
\Bibitem{Shc17}
\by M.~V.~Shchukin
\paper The minimal number of idempotent generators for $3$-homogeneous $\mathrm{C^*}$-algebra over two-dimensional compact oriented manifold
\jour Tr. Inst. Mat.
\yr 2017
\vol 25
\issue 1
\pages 93--96
\mathnet{http://mi.mathnet.ru/timb271}


Linking options:
  • http://mi.mathnet.ru/eng/timb271
  • http://mi.mathnet.ru/eng/timb/v25/i1/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:86
    Full text:40
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020