RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2017, Volume 25, Number 2, Pages 6–10 (Mi timb273)  

On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots

M. L. Bezrukov

Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: Consider a class of polynomials defined by a fixed degree and a fixed height. Introducing an additional constraint on the value of the $p$-adic norm of the derivative at a $p$-adic root, we find an upper bound on the number of such polynomials. A similar bound has been proved in the case where the derivative is bounded at a real and a $p$-adic root.

Full text: PDF file (254 kB)
References: PDF file   HTML file
UDC: 511.42
Received: 24.10.2017

Citation: M. L. Bezrukov, “On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots”, Tr. Inst. Mat., 25:2 (2017), 6–10

Citation in format AMSBIB
\Bibitem{Bez17}
\by M.~L.~Bezrukov
\paper On the number of integral polynomialswith bounds placed on the derivative at $p$-adic and real roots
\jour Tr. Inst. Mat.
\yr 2017
\vol 25
\issue 2
\pages 6--10
\mathnet{http://mi.mathnet.ru/timb273}


Linking options:
  • http://mi.mathnet.ru/eng/timb273
  • http://mi.mathnet.ru/eng/timb/v25/i2/p6

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики
    Number of views:
    This page:99
    Full text:49
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020