RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Inst. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Inst. Mat., 2007, Volume 15, Number 1, Pages 111–117 (Mi timb90)  

This article is cited in 3 scientific papers (total in 3 papers)

On a problem in the geometry of numbers

A. M. Raigorodskii

Moscow State University

Abstract: In this paper, a problem of the geometry of numbers is considered. The notion of the defect is introduced, which helps to measure the difference between a basis in a lattice and a basis in its centering. Various estimates for the defect are obtained as well as some new problems are discussed.

Full text: PDF file (239 kB)
References: PDF file   HTML file
UDC: 511.48
Received: 15.03.2007
Language:

Citation: A. M. Raigorodskii, “On a problem in the geometry of numbers”, Tr. Inst. Mat., 15:1 (2007), 111–117

Citation in format AMSBIB
\Bibitem{Rai07}
\by A.~M.~Raigorodskii
\paper On a problem in the geometry of numbers
\jour Tr. Inst. Mat.
\yr 2007
\vol 15
\issue 1
\pages 111--117
\mathnet{http://mi.mathnet.ru/timb90}


Linking options:
  • http://mi.mathnet.ru/eng/timb90
  • http://mi.mathnet.ru/eng/timb/v15/i1/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Bagan, A. M. Raigorodskii, “Defect of an Admissible Octahedron in a Centering of an Integer Lattice Generated by a Given Number of Vectors”, Math. Notes, 99:3 (2016), 457–459  mathnet  crossref  crossref  mathscinet  isi  elib
    2. M. A. Fadin, A. M. Raigorodskii, “Maximum defect of an admissible octahedron in a rational lattice”, Russian Math. Surveys, 74:3 (2019), 552–554  mathnet  crossref  crossref  adsnasa  isi  elib
    3. K. D. Kovalenko, A. M. Raigorodskii, “Systems of Representatives”, Math. Notes, 106:3 (2019), 372–377  mathnet  crossref  crossref  isi  elib
  • Труды Института математики
    Number of views:
    This page:189
    Full text:102
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020