RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2014, Volume 20, Number 1, Pages 52–67 (Mi timm1029)  

This article is cited in 5 scientific papers (total in 5 papers)

50 years to Schoenberg's problem on the convergence of spline interpolation

Yu. S. Volkovab, Yu. N. Subbotincd

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
c Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
d Institute of Mathematics and Computer Science, Ural Federal University

Abstract: A review of results on the convergence of interpolation process for polynomial splines and derivatives in the last 50 years is given.

Keywords: polynomial splines, interpolation, convergence.

Full text: PDF file (228 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 288, suppl. 1, 222–237

Bibliographic databases:

Document Type: Article
UDC: 517.518
Received: 30.08.2013

Citation: Yu. S. Volkov, Yu. N. Subbotin, “50 years to Schoenberg's problem on the convergence of spline interpolation”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 52–67; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 222–237

Citation in format AMSBIB
\Bibitem{VolSub14}
\by Yu.~S.~Volkov, Yu.~N.~Subbotin
\paper 50~years to Schoenberg's problem on the convergence of spline interpolation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 52--67
\mathnet{http://mi.mathnet.ru/timm1029}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3364191}
\elib{http://elibrary.ru/item.asp?id=21258482}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 222--237
\crossref{https://doi.org/10.1134/S0081543815020236}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000352991400022}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958292260}


Linking options:
  • http://mi.mathnet.ru/eng/timm1029
  • http://mi.mathnet.ru/eng/timm/v20/i1/p52

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Chernov, “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 264–279  mathnet  mathscinet  elib
    2. Yu. S. Volkov, “The general problem of polynomial spline interpolation”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 187–198  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. T. Shevaldin, O. Ya. Shevaldina, “The Lebesgue constant of local cubic splines with equally-spaced knots”, Num. Anal. Appl., 10:4 (2017), 362–367  mathnet  crossref  crossref  isi  elib
    4. Yu. S. Volkov, “Convergence of spline interpolation processes and conditionality of systems of equations for spline construction”, Sb. Math., 210:4 (2019), 550–564  mathnet  crossref  crossref  isi  elib
    5. V. V. Bogdanov, Yu. S. Volkov, “Usloviya formosokhraneniya pri interpolyatsii kubicheskimi splainami”, Matem. tr., 22:1 (2019), 19–67  mathnet  crossref
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:305
    Full text:49
    References:26
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019