RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2014, Volume 20, Number 1, Pages 130–141 (Mi timm1036)  

The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space

N. A. Kuklinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University

Abstract: We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree $27$. This polynomial is a linear combination of Legendre polynomials of degrees $0,1,2,3,4,5,8,9,10,20,27$ with positive coefficients; it has simple root $1/2$ and five roots of multiplicity $2$ in $(-1,1/2)$. Also we consider dual problem for nonnegative measures on $[-1,1/2]$. We prove that extremal measure is unique.

Keywords: Delsarte method, infinite-dimensional linear programming, Legendre polynomials, kissing numbers.

Full text: PDF file (205 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 288, suppl. 1, 99–111

Bibliographic databases:

UDC: 517.518.86+519.147
Received: 03.12.2013

Citation: N. A. Kuklin, “The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 130–141; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 99–111

Citation in format AMSBIB
\Bibitem{Kuk14}
\by N.~A.~Kuklin
\paper The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 130--141
\mathnet{http://mi.mathnet.ru/timm1036}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3364198}
\elib{http://elibrary.ru/item.asp?id=21258489}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 99--111
\crossref{https://doi.org/10.1134/S008154381502011X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000352991400010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958292235}


Linking options:
  • http://mi.mathnet.ru/eng/timm1036
  • http://mi.mathnet.ru/eng/timm/v20/i1/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:173
    Full text:43
    References:32
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020