RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2014, Volume 20, Number 2, Pages 74–87 (Mi timm1060)  

This article is cited in 4 scientific papers (total in 4 papers)

Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume

A. Yu. Vesninab, V. V. Tarkaevcd, E. A. Fominykhcd

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Omsk State Technical University
c Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
d Chelyabinsk State University

Abstract: We give a complete list of three-dimensional orientable hyperbolic manifolds with cusps obtained by gluing together at most ten regular ideal hyperbolic tetrahedra. Although the list is exhaustive, the question of nonhomeomorphism remains open for some pairs of manifolds with one, two, and three cusps.

Keywords: hyperbolic manifolds with cusps, complexity of manifolds.

Full text: PDF file (212 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 289, suppl. 1, 227–239

Bibliographic databases:

Document Type: Article
UDC: 515.162
Received: 12.03.2014

Citation: A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 74–87; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 227–239

Citation in format AMSBIB
\Bibitem{VesTarFom14}
\by A.~Yu.~Vesnin, V.~V.~Tarkaev, E.~A.~Fominykh
\paper Three-dimensional hyperbolic manifolds with cusps of complexity~10 having maximal volume
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 74--87
\mathnet{http://mi.mathnet.ru/timm1060}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3227485}
\elib{http://elibrary.ru/item.asp?id=21585626}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 227--239
\crossref{https://doi.org/10.1134/S0081543815050211}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000356931500021}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932613231}


Linking options:
  • http://mi.mathnet.ru/eng/timm1060
  • http://mi.mathnet.ru/eng/timm/v20/i2/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Three-dimensional manifolds with poor spines”, Proc. Steklov Inst. Math., 288 (2015), 29–38  mathnet  crossref  crossref  isi  elib
    2. A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Complexity of virtual 3-manifolds”, Sb. Math., 207:11 (2016), 1493–1511  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A Census of Tetrahedral Hyperbolic Manifolds”, Exp. Math., 25:4 (2016), 466–481  crossref  mathscinet  zmath  isi  scopus
    4. A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “New aspects of complexity theory for 3-manifolds”, Russian Math. Surveys, 73:4 (2018), 615–660  mathnet  crossref  crossref  adsnasa  isi  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:153
    Full text:15
    References:28
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019