RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2015, Volume 21, Number 2, Pages 87–101 (Mi timm1173)  

This article is cited in 1 scientific paper (total in 1 paper)

On a minimax control problem for a positional functional under geometric and integral constraints on control actions

D. V. Kornevab, N. Yu. Lukoyanovab

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: Within the game-theoretical approach we consider a minimax feedback control problem for a linear dynamical system with a positional quality index in the form of the norm of motion deviations at given times from given target points. Control actions are subject to both geometric and integral constraints. A procedure for the approximate calculation of the optimal guaranteed result and for the construction of a control law that ensures the result is developed. The procedure is based on the recursive construction of upper convex hulls of auxiliary program functions. Results of numerical simulations are presented.

Keywords: minimax control, differential games, integral constraints, nonterminal payoff.

Full text: PDF file (254 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, 293, suppl. 1, 85–100

Bibliographic databases:

UDC: 517.977
Received: 01.02.2015

Citation: D. V. Kornev, N. Yu. Lukoyanov, “On a minimax control problem for a positional functional under geometric and integral constraints on control actions”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 2, 2015, 87–101; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 85–100

Citation in format AMSBIB
\Bibitem{KorLuk15}
\by D.~V.~Kornev, N.~Yu.~Lukoyanov
\paper On a minimax control problem for a positional functional under geometric and integral constraints on control actions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 2
\pages 87--101
\mathnet{http://mi.mathnet.ru/timm1173}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3408881}
\elib{http://elibrary.ru/item.asp?id=23607923}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 293
\issue , suppl. 1
\pages 85--100
\crossref{https://doi.org/10.1134/S0081543816050096}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000380005200009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978492477}


Linking options:
  • http://mi.mathnet.ru/eng/timm1173
  • http://mi.mathnet.ru/eng/timm/v21/i2/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Kornev, “Chislennye metody resheniya differentsialnykh igr s neterminalnoi platoi”, Izv. IMI UdGU, 2016, no. 2(48), 82–151  mathnet  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:178
    Full text:21
    References:30
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019