|
This article is cited in 1 scientific paper (total in 1 paper)
Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
Sh. A. Balgimbaeva, T. I. Smirnov Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
Abstract:
Order-exact bounds are obtained for Fourier widths of the Nikol'skii-Besov classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and Triebel-Lizorkin classes $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ of functions with a given majorant $\Omega$ for the mixed modulus of smoothness of order $l$ in the space $L_q(\mathbb{T}^d)$ for all relations between the parameters $p$, $q$, and $\theta$ under some conditions on $\Omega$. The upper bounds follow from order-exact bounds for approximations of the classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ by special partial sums of Fourier series in the multiple system $\Psi_d$ of periodized Meyer wavelets.
Keywords:
fourier width, mixed modulus of smoothness, function spaces, wavelet system.
Full text:
PDF file (273 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
517.5 Received: 20.07.2015
Citation:
Sh. A. Balgimbaeva, T. I. Smirnov, “Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 78–94
Citation in format AMSBIB
\Bibitem{BalSmi15}
\by Sh.~A.~Balgimbaeva, T.~I.~Smirnov
\paper Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 78--94
\mathnet{http://mi.mathnet.ru/timm1231}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468432}
\elib{https://elibrary.ru/item.asp?id=25300987}
Linking options:
http://mi.mathnet.ru/eng/timm1231 http://mi.mathnet.ru/eng/timm/v21/i4/p78
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Sh. A. Balgimbayeva, T. I. Smirnov, “Estimates of the Fourier widths of the classes of periodic functions with given majorant of the mixed modulus of smoothness”, Siberian Math. J., 59:2 (2018), 217–230
|
Number of views: |
This page: | 160 | Full text: | 48 | References: | 25 | First page: | 8 |
|