|
On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
V. P. Tanana, A. I. Sidikova South Ural State University, Chelyabinsk
Abstract:
A regularizing algorithm for the approximate solution of integral equations of the first kind is investigated. The algorithm involves a finite-dimensional approximation of the problem; more exactly, the integral equation is discretized in two variables. An error estimate of the algorithm is obtained with the use of the equivalence of the generalized discrepancy method and the generalized discrepancy principle.
Keywords:
regularization, error estimate, ill-posed problem.
Full text:
PDF file (139 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, 299, suppl. 1, 217–224
Bibliographic databases:
UDC:
517.948 Received: 26.02.2015
Citation:
V. P. Tanana, A. I. Sidikova, “On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 263–270; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 217–224
Citation in format AMSBIB
\Bibitem{TanSid16}
\by V.~P.~Tanana, A.~I.~Sidikova
\paper On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 263--270
\mathnet{http://mi.mathnet.ru/timm1279}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3497203}
\elib{https://elibrary.ru/item.asp?id=25655617}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 217--224
\crossref{https://doi.org/10.1134/S0081543817090231}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000425144600022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042166113}
Linking options:
http://mi.mathnet.ru/eng/timm1279 http://mi.mathnet.ru/eng/timm/v22/i1/p263
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 162 | Full text: | 57 | References: | 33 | First page: | 18 |
|