RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2016, Volume 22, Number 1, Pages 263–270 (Mi timm1279)  

On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind

V. P. Tanana, A. I. Sidikova

South Ural State University, Chelyabinsk

Abstract: A regularizing algorithm for the approximate solution of integral equations of the first kind is investigated. The algorithm involves a finite-dimensional approximation of the problem; more exactly, the integral equation is discretized in two variables. An error estimate of the algorithm is obtained with the use of the equivalence of the generalized discrepancy method and the generalized discrepancy principle.

Keywords: regularization, error estimate, ill-posed problem.

Full text: PDF file (139 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, 299, suppl. 1, 217–224

Bibliographic databases:

UDC: 517.948
Received: 26.02.2015

Citation: V. P. Tanana, A. I. Sidikova, “On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 263–270; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 217–224

Citation in format AMSBIB
\Bibitem{TanSid16}
\by V.~P.~Tanana, A.~I.~Sidikova
\paper On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 263--270
\mathnet{http://mi.mathnet.ru/timm1279}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3497203}
\elib{https://elibrary.ru/item.asp?id=25655617}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 217--224
\crossref{https://doi.org/10.1134/S0081543817090231}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000425144600022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042166113}


Linking options:
  • http://mi.mathnet.ru/eng/timm1279
  • http://mi.mathnet.ru/eng/timm/v22/i1/p263

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:162
    Full text:57
    References:33
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021