|
On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
I. N. Belousovab, A. A. Makhnevab a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Abstract:
Let $\Gamma$ be an antipodal graph with intersection array $\{2r+1,2r-2,1;1,2,2r+1\}$, where $2r(r+1)\le 4096$. If $2r+1$ is a prime power, then Mathon's scheme provides the existence of an edge-symmetric graph with this intersection array. Note that $2r+1$ is not a prime power only for $r\in \{7,17,19,22,25,27,31,32,37,38,42,43\}$. We study automorphisms of hypothetical distance-regular graphs with the specified values of $r$. The cases $r\in \{7,17,19\}$ were considered earlier. We prove that, if $\Gamma$ is a vertex-symmetric graph with intersection array $\{2r+1,2r-2,1;1,2,2r+1\}$, $2r+1$ is not a prime power, and $r\le 43$, then $r=25,27,31$.
Keywords:
distance-regular graph, graph automorphism.
DOI:
https://doi.org/10.21538/0134-4889-2016-22-2-28-37
Full text:
PDF file (186 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, 296, suppl. 1, 85–94
Bibliographic databases:
UDC:
519.17
MSC: 05C25 Received: 25.01.2016
Citation:
I. N. Belousov, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 28–37; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 85–94
Citation in format AMSBIB
\Bibitem{BelMak16}
\by I.~N.~Belousov, A.~A.~Makhnev
\paper On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 28--37
\mathnet{http://mi.mathnet.ru/timm1287}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-28-37}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3559158}
\elib{https://elibrary.ru/item.asp?id=26040809}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 85--94
\crossref{https://doi.org/10.1134/S0081543817020080}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000403678000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018748139}
Linking options:
http://mi.mathnet.ru/eng/timm1287 http://mi.mathnet.ru/eng/timm/v22/i2/p28
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 148 | Full text: | 28 | References: | 19 | First page: | 6 |
|