RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2016, Volume 22, Number 4, Pages 201–214 (Mi timm1366)  

On Hankel operators associated with linearly ordered abelian groups

A. R. Mirotin, E. Yu. Kuz'menkova

Gomel State University named after Francisk Skorina

Abstract: We consider two variants of generalizations of Hankel operators to the case of linearly ordered abelian groups. Criteria for the boundedness and compactness of these operators are given, in particular, in terms of functions of bounded mean oscillation. It is proved that the generalized Hankel operators are non-Fredholm. Some applications to the theory of Toeplitz operators on groups are given.

Keywords: Hankel operator, integral Hankel operator, Fredholm operator, compact operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group, Toeplitz operator.

Funding Agency Grant Number
National Academy of Sciences of Belarus, Ministry of Education of the Republic of Belarus 20160825


DOI: https://doi.org/10.21538/0134-4889-2016-22-4-201-214

Full text: PDF file (257 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.986.62
MSC: 47B35, 43A17
Received: 18.05.2016

Citation: A. R. Mirotin, E. Yu. Kuz'menkova, “On Hankel operators associated with linearly ordered abelian groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 201–214

Citation in format AMSBIB
\Bibitem{MirKuz16}
\by A.~R.~Mirotin, E.~Yu.~Kuz'menkova
\paper On Hankel operators associated with linearly ordered abelian groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 201--214
\mathnet{http://mi.mathnet.ru/timm1366}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-201-214}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3590934}
\elib{http://elibrary.ru/item.asp?id=27350138}


Linking options:
  • http://mi.mathnet.ru/eng/timm1366
  • http://mi.mathnet.ru/eng/timm/v22/i4/p201

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:70
    Full text:14
    References:11
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019