RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2017, Volume 23, Number 3, Pages 125–133 (Mi timm1443)  

Power wight integrability for sums of moduli of blocks from trigonometric series

V. P. Zastavnyi, A. S. Levadnaya

Donetsk National University

Abstract: The following problem is studied: find conditions on sequences $\{\gamma(r)\}$, $\{n_j\}$, and $\{v_j\}$ under which, for any sequence $\{b_k\}$ such that $\sum_{k=r}^{\infty}|b_k-b_{k+1}|\leq\gamma(r)$, $b_k\to 0$, the integral $\int_0^\pi U^p(x)/{x^q}dx$ is convergent, where $p>0$, $q\in[1-p;1)$, and $U(x):=\sum_{j=1}^{\infty}|\sum_{k=n_j}^{v_j}b_k \sin kx|$. In the case $\gamma(r)={B}/{r}$, $B>0$, this problem was studied and solved by S. A. Telyakovskii. In the case where $p\ge 1$, $q=0$, $v_j=n_{j+1}-1$, and the sequence $\{b_k\}$ is monotone, A. S. Belov obtained a criterion for the belonging of the function $U(x)$ to the space $L_p$. In Theorem 1 of the present paper, we give sufficient conditions for the convergence of the above integral, which for $\gamma(r)= B/{r}$, $B>0$, coincide with Telyakovskii's sufficient conditions. In the case $\gamma(r)= O(1/{r})$, Telyakovskii's conditions may be violated, but the application of Theorem 1 guarantees the convergence of the integral. The corresponding examples are given in the last section of the paper. The question on necessary conditions for the convergence of the integral $\int_0^\pi U^p(x)/{x^q}dx$, where $p>0$ and $q\in[1-p;1)$, remains open.

Keywords: trigonometric series, sums of moduli of blocks, power weight.

DOI: https://doi.org/10.21538/0134-4889-2017-23-3-125-133

Full text: PDF file (195 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.518.45
MSC: 42A32
Received: 15.05.2017

Citation: V. P. Zastavnyi, A. S. Levadnaya, “Power wight integrability for sums of moduli of blocks from trigonometric series”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 125–133

Citation in format AMSBIB
\Bibitem{ZasLev17}
\by V.~P.~Zastavnyi, A.~S.~Levadnaya
\paper Power wight integrability for sums of moduli of blocks from trigonometric series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 125--133
\mathnet{http://mi.mathnet.ru/timm1443}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-125-133}
\elib{http://elibrary.ru/item.asp?id=29938005}


Linking options:
  • http://mi.mathnet.ru/eng/timm1443
  • http://mi.mathnet.ru/eng/timm/v23/i3/p125

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:144
    Full text:30
    References:18
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019