RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2017, Volume 23, Number 4, Pages 85–97 (Mi timm1469)  

Brieskorn manifolds, generated Sieradski groups, and coverings of lens space

A. Yu. Vesninab, T. A. Kozlovskayac

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
c Magadan Institute of Economics, Magadan, 685000 Russia

Abstract: The Brieskorn manifold $\mathscr B(p,q,r)$ is the $r$-fold cyclic covering of the three-dimensional sphere $S^{3}$ branched over the torus knot $T(p,q)$. The generalised Sieradski groups $S(m,p,q)$ are groups with $m$-cyclic presentation $G_{m}(w)$, where the word $w$ has a special form depending on $p$ and $q$. In particular, $S(m,3,2)=G_{m}(w)$ is the group with $m$ generators $x_{1},\ldots,x_{m}$ and $m$ defining relations $w(x_{i}, x_{i+1}, x_{i+2})=1$, where $w(x_{i}, x_{i+1}, x_{i+2}) = x_{i} x_{i+2} x_{i+1}^{-1}$. Cyclic presentations of $S(2n,3,2)$ in the form $G_{n}(w)$ were investigated by Howie and Williams, who showed that the $n$-cyclic presentations are geometric, i.e., correspond to the spines of closed three-dimensional manifolds. We establish an analogous result for the groups $S(2n,5,2)$. It is shown that in both cases the manifolds are $n$-fold branched cyclic coverings of lens spaces. For the classification of the constructed manifolds, we use Matveev's computer program “Recognizer.”

Keywords: three-dimensional manifold, Brieskorn manifold, cyclically presented group, Sieradski group, lens space, branched covering.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-07906


DOI: https://doi.org/10.21538/0134-4889-2017-23-4-85-97

Full text: PDF file (1257 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 514.132+515.162
MSC: 57M05, 20F05, 57M50
Received: 07.08.2017

Citation: A. Yu. Vesnin, T. A. Kozlovskaya, “Brieskorn manifolds, generated Sieradski groups, and coverings of lens space”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 85–97

Citation in format AMSBIB
\Bibitem{VesKoz17}
\by A.~Yu.~Vesnin, T.~A.~Kozlovskaya
\paper Brieskorn manifolds, generated Sieradski groups, and coverings of lens space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 85--97
\mathnet{http://mi.mathnet.ru/timm1469}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-85-97}
\elib{http://elibrary.ru/item.asp?id=30713962}


Linking options:
  • http://mi.mathnet.ru/eng/timm1469
  • http://mi.mathnet.ru/eng/timm/v23/i4/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:103
    Full text:22
    References:10
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019