RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Тр. ИММ УрО РАН, 2017, том 23, номер 4, страницы 136–151 (Mi timm1474)  

О конечных простых линейных и унитарных группах над полями разных характеристик, графы простых чисел которых совпадают. I

М. Р. Зиновьеваab

a Институт математики и механики им. Н. Н. Красовского УрО РАН, г. Екатеринбург
b Уральский федеральный университет им. Б. Н. Ельцина, г. Екатеринбург

Аннотация: Пусть $G$ — конечная группа, $\pi(G)$ — множество простых делителей ее порядка, $\omega(G)$ — множество порядков ее элементов. На $\pi(G)$ определяется граф со следующим отношением смежности: различные вершины $r$ и $s$ из $\pi(G)$ смежны тогда и только тогда, когда $rs\in \omega(G)$. Этот граф называется графом Грюнберга–Кегеля, или графом простых чисел группы $G$, и обозначается через $GK(G)$. В ряде статей мы описываем условия совпадения графов простых чисел неизоморфных простых групп. Этот вопрос связан с вопросом А.В. Васильева 16.26 из “Коуровской тетради” о количестве неизоморфных простых групп с одинаковым графом простых чисел. Ранее автором были даны необходимые и достаточные условия совпадения графов простых чисел двух конечных простых групп лиева типа $G$ и $G_1$, где $G$ и $G_1$ — две неизоморфные конечные простые группы лиева типа над полями порядков $q$ и $q_1$ соответственно одной характеристики. Пусть $G$ и $G_1$ — две неизоморфные конечные простые группы лиева типа над полями порядков $q$ и $q_1$ соответственно разных характеристик. Ранее автором получены необходимые условия совпадения графов простых чисел двух конечных простых групп лиева типа $G$ и $G_1$. В настоящей статье уточняется последний результат в случае, когда одна из групп — простая линейная группа достаточно большого лиева ранга над полем порядка $q$. Доказано, что если $G$ — простая линейная группа достаточно большого лиева ранга, то графы простых чисел групп $G$ и $G_1$ могут совпадать только при выполнении одного из девятнадцати случаев. В качестве следствия основного результата получены ограничения (при некоторых дополнительных условиях) на возможное число конечных простых групп с графом как у простой линейной группы.

Ключевые слова: конечная простая линейная группа, конечная простая унитарная группа, граф простых чисел, граф Грюнберга–Кегеля, спектр.

Финансовая поддержка Номер гранта
Российский научный фонд 15-11-10025
Работа выполнена за счет гранта РНФ (проект 15-11-10025).


DOI: https://doi.org/10.21538/0134-4889-2017-23-4-136-151

Полный текст: PDF файл (266 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 512.542
MSC: 05C25, 20D05, 20D06
Поступила в редакцию: 23.08.2017

Образец цитирования: М. Р. Зиновьева, “О конечных простых линейных и унитарных группах над полями разных характеристик, графы простых чисел которых совпадают. I”, Тр. ИММ УрО РАН, 23, № 4, 2017, 136–151

Цитирование в формате AMSBIB
\RBibitem{Zin17}
\by М.~Р.~Зиновьева
\paper О конечных простых линейных и унитарных группах над полями разных характеристик, графы простых чисел которых совпадают. I
\serial Тр. ИММ УрО РАН
\yr 2017
\vol 23
\issue 4
\pages 136--151
\mathnet{http://mi.mathnet.ru/timm1474}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-136-151}
\elib{http://elibrary.ru/item.asp?id=30713968}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/timm1474
  • http://mi.mathnet.ru/rus/timm/v23/i4/p136

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики и механики УрО РАН
    Просмотров:
    Эта страница:76
    Полный текст:7
    Литература:13
    Первая стр.:3

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019