RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2018, Volume 24, Number 1, Pages 40–52 (Mi timm1495)  

Optimal trajectory in $\mathbb{R}^2$ under observation

V. I. Berdyshev, V. B. Kostousov, A. A. Popov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: We study the problem of forming a trajectory in a given “corridor” from $\mathbb{R}^2$ such that the minimum distance from this trajectory to observers is maximal. Each observer is located outside the corridor and has an open convex observation cone overlapping the corridor. The positions of the observers and the cones are fixed. An observer can measure the distance to an object moving along the trajectory when the object is inside its cone. We describe an “optimal corridor”, i.e., the set of all optimal trajectories with given initial and terminal points. A similar problem is solved in the case when the moving object is a solid body, more exactly, a disk. For practical calculations, we propose algorithms that construct an optimal corridor and a shortest optimal trajectory for a solid object in a discrete statement. The initial continuous conditions of the problem, such as the boundaries of the corridor and the observation cones, are projected onto a discrete regular grid, and a discrete realization of the optimal corridor and its boundaries are constructed on the grid in the form of 8-connected sequences of grid nodes. The shortest optimal trajectory of the solid object is found using Dijkstra's algorithm.

Keywords: moving object, observer, optimal trajectory, shortest path.

Funding Agency Grant Number
Russian Science Foundation 14-11-00702
Ural Branch of the Russian Academy of Sciences 18-1-1-14


DOI: https://doi.org/10.21538/0134-4889-2018-24-1-40-52

Full text: PDF file (331 kB)
First page: PDF file
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 519.62
MSC: 00A05
Received: 29.12.2017

Citation: V. I. Berdyshev, V. B. Kostousov, A. A. Popov, “Optimal trajectory in $\mathbb{R}^2$ under observation”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 40–52

Citation in format AMSBIB
\Bibitem{BerKosPop18}
\by V.~I.~Berdyshev, V.~B.~Kostousov, A.~A.~Popov
\paper Optimal trajectory in $\mathbb{R}^2$ under observation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 40--52
\mathnet{http://mi.mathnet.ru/timm1495}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-40-52}
\elib{http://elibrary.ru/item.asp?id=32604043}


Linking options:
  • http://mi.mathnet.ru/eng/timm1495
  • http://mi.mathnet.ru/eng/timm/v24/i1/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:65
    References:11
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019