RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2005, Volume 11, Number 2, Pages 72–91 (Mi timm191)  

This article is cited in 10 scientific papers (total in 10 papers)

An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii

D. V. Gorbachev


Abstract: An extremal problem concerning functions with small supports posed by Konyagin in connection with number-theoretic applications is considered. It is shown to be related to extremal problems on the best Nikol'skii constants in the inequalities for $C$- and $L$-norms of trigonometric polynomials and entire functions of exponential type. New estimates for constants in these problems are obtained.

Full text: PDF file (353 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2005, suppl. 2, S117–S138

Bibliographic databases:
UDC: 517.5
Received: 16.07.2004

Citation: D. V. Gorbachev, “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 72–91; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S117–S138

Citation in format AMSBIB
\Bibitem{Gor05}
\by D.~V.~Gorbachev
\paper An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii
\inbook Function theory
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2005
\vol 11
\issue 2
\pages 72--91
\mathnet{http://mi.mathnet.ru/timm191}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2200225}
\zmath{https://zbmath.org/?q=an:1126.41016}
\elib{http://elibrary.ru/item.asp?id=12040705}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2005
\issue , suppl. 2
\pages S117--S138


Linking options:
  • http://mi.mathnet.ru/eng/timm191
  • http://mi.mathnet.ru/eng/timm/v11/i2/p72

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Benyamini Y., Kroo A., Pinkus A., “L (1)-Approximation and Finding Solutions with Small Support”, Constr. Approx., 36:3 (2012), 399–431  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23  mathnet  crossref  mathscinet  isi  elib
    3. Yu. V. Malykhin, K. S. Ryutin, “Concentration of the $L_1$-norm of trigonometric polynomials and entire functions”, Sb. Math., 205:11 (2014), 1620–1649  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Arestov V. Deikalova M., “Nikol'Skii Inequality Between the Uniform Norm and l-Q-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708  crossref  mathscinet  zmath  isi  elib  scopus
    5. Ganzburg M.I., Tikhonov S.Yu., “On Sharp Constants in Bernstein-Nikolskii Inequalities”, Constr. Approx., 45:3 (2017), 449–466  crossref  mathscinet  zmath  isi  scopus
    6. Arestov V.V., Deikalova M.V., “Jacobi Translation and the Inequality of Different Metrics For Algebraic Polynomials on An Interval”, Dokl. Math., 95:1 (2017), 21–25  crossref  mathscinet  zmath  isi  scopus
    7. Chunaev P. Danchenko V., “Quadrature Formulas With Variable Nodes and Jackson-Nikolskii Inequalities For Rational Functions”, J. Approx. Theory, 228 (2018), 1–20  crossref  mathscinet  zmath  isi  scopus
    8. D. V. Gorbachev, “Konstanty Nikolskogo - Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 92–103  mathnet  crossref  elib
    9. D. V. Gorbachev, N. N. Dobrovolskii, “Konstanty Nikolskogo v prostranstvakh $L^{p}(\mathbb{R},|x|^{2\alpha+1} dx)$”, Chebyshevskii sb., 19:2 (2018), 67–79  mathnet  crossref  elib
    10. D. V. Gorbachev, I. A. Martyanov, “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 19:2 (2018), 80–89  mathnet  crossref  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:334
    Full text:133
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020