RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2009, Volume 15, Number 1, Pages 44–58 (Mi timm203)  

This article is cited in 4 scientific papers (total in 4 papers)

Regularizing algorithms for localizing the breakpoints of a noisy function

T. V. Antonova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: We consider the problem of localizing the singularities (breakpoints) of functions that are noisy in the spaces $L_p$, $1<p<\infty$, or $C$. We construct a wide class of smoothing algorithms that determine the number and location of breakpoints. In addition, for the case when a function is noisy in $C$, a finitedifference method is constructed. For the proposed methods, convergence theorems are proved and approximation accuracy estimates for the location of breakpoints are obtained. The lower estimates obtained in this paper show the order-optimality of the methods. For all the methods constructed, their capacity of separating close breakpoints is investigated.

Keywords: ill-posed problems, localization of breakpoints, regularizing algorithms, separability threshold

Full text: PDF file (226 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, 265, suppl. 1, S24–S39

Bibliographic databases:

UDC: 517.988.68
Received: 30.12.2008

Citation: T. V. Antonova, “Regularizing algorithms for localizing the breakpoints of a noisy function”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 1, 2009, 44–58; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S24–S39

Citation in format AMSBIB
\Bibitem{Ant09}
\by T.~V.~Antonova
\paper Regularizing algorithms for localizing the breakpoints of a~noisy function
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 1
\pages 44--58
\mathnet{http://mi.mathnet.ru/timm203}
\elib{http://elibrary.ru/item.asp?id=11929776}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 265
\issue , suppl. 1
\pages S24--S39
\crossref{https://doi.org/10.1134/S0081543809060030}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000268192700003}


Linking options:
  • http://mi.mathnet.ru/eng/timm203
  • http://mi.mathnet.ru/eng/timm/v15/i1/p44

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. V. Antonova, “New methods for localizing discontinuities of a noisy function”, Num. Anal. Appl., 3:4 (2010), 306–316  mathnet  crossref
    2. A. L. Ageev, T. V. Antonova, “A method for the localization of singularities of a solution to a convolution-type equation of the first kind with a step kernel”, Russian Math. (Iz. VUZ), 55:7 (2011), 1–8  mathnet  crossref  mathscinet
    3. A. L. Ageev, T. V. Antonova, “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. IMM UrO RAN, 17, no. 3, 2011, 30–45  mathnet  elib
    4. Kurlikovskii D.V., Ageev A.L., Antonova T.V., “Research of a Threshold (Correlation) Method and Application For Localization of Singularities”, Sib. Electron. Math. Rep., 13 (2016), 829–848  mathnet  crossref  mathscinet  zmath  isi
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:301
    Full text:79
    References:43
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020