RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2009, Volume 15, Number 2, Pages 203–210 (Mi timm236)  

This article is cited in 4 scientific papers (total in 4 papers)

On Shunkov Groups with a strongly embedded subgroup

V. I. Senashov

Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences

Abstract: Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded subgroup possessing a Chernikov almost layer-finite periodic part is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded group under the conditions that all proper subgroups are almost layer-finite and that the group is periodic.

Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity

Full text: PDF file (151 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, 267, suppl. 1, S210–S217

Bibliographic databases:

UDC: 512.54
Received: 27.10.2008

Citation: V. I. Senashov, “On Shunkov Groups with a strongly embedded subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 2, 2009, 203–210; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S210–S217

Citation in format AMSBIB
\Bibitem{Sen09}
\by V.~I.~Senashov
\paper On Shunkov Groups with a~strongly embedded subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 2
\pages 203--210
\mathnet{http://mi.mathnet.ru/timm236}
\elib{https://elibrary.ru/item.asp?id=12878782}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 267
\issue , suppl. 1
\pages S210--S217
\crossref{https://doi.org/10.1134/S0081543809070190}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000274041900019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952299553}


Linking options:
  • http://mi.mathnet.ru/eng/timm236
  • http://mi.mathnet.ru/eng/timm/v15/i2/p203

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Senashov, “O gruppakh Shunkova s silno vlozhennoi pochti sloino konechnoi podgruppoi”, Tr. IMM UrO RAN, 16, no. 3, 2010, 234–239  mathnet  elib
    2. Senashov V.I., “On Groups with a Strongly Imbedded Subgroup Having an Almost Layer-Finite Periodic Part”, Ukr. Math. J., 64:3 (2012), 433–440  crossref  mathscinet  zmath  isi  elib  scopus
    3. Senashov V.I., “on Sylow Subgroups of Some Shunkov Groups”, Ukr. Math. J., 67:3 (2015), 455–463  crossref  mathscinet  zmath  isi  elib  scopus
    4. Senashov V.I., “Characterizations of the Groups With Almost Layer-Finite Periodic Parts”, Ukr. Math. J., 69:7 (2017), 1123–1131  crossref  mathscinet  isi  scopus
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:182
    Full text:57
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020