RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2001, Volume 7, Number 1, Pages 144–159 (Mi timm306)  

This article is cited in 6 scientific papers (total in 6 papers)

A problem of extremal interpolation for multivariate functions

S. I. Novikov, V. T. Shevaldin


Full text: PDF file (610 kB)

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2001, suppl. 1, S150–S166

Bibliographic databases:
UDC: 517.5
Received: 29.11.1999

Citation: S. I. Novikov, V. T. Shevaldin, “A problem of extremal interpolation for multivariate functions”, Approximation theory. Asymptotical expansions, Trudy Inst. Mat. i Mekh. UrO RAN, 7, no. 1, 2001, 144–159; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S150–S166

Citation in format AMSBIB
\Bibitem{NovShe01}
\by S.~I.~Novikov, V.~T.~Shevaldin
\paper A~problem of extremal interpolation for multivariate functions
\inbook Approximation theory. Asymptotical expansions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2001
\vol 7
\issue 1
\pages 144--159
\mathnet{http://mi.mathnet.ru/timm306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2066717}
\zmath{https://zbmath.org/?q=an:1117.41004}
\elib{http://elibrary.ru/item.asp?id=12226534}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2001
\issue , suppl. 1
\pages S150--S166


Linking options:
  • http://mi.mathnet.ru/eng/timm306
  • http://mi.mathnet.ru/eng/timm/v7/i1/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. I. Novikov, “Interpolyatsiya v share s minimalnym znacheniem $L_p$-normy operatora Laplasa”, Tr. IMM UrO RAN, 17, no. 3, 2011, 258–265  mathnet  elib
    2. S. I. Novikov, “Interpolyatsiya na kvadrate s minimalnym znacheniem ravnomernoi normy operatora Laplasa”, Tr. IMM UrO RAN, 18, no. 4, 2012, 249–257  mathnet  elib
    3. S. I. Novikov, “Ob odnoi zadache interpolyatsii s minimalnym znacheniem operatora Laplasa”, Tr. IMM UrO RAN, 19, no. 3, 2013, 230–243  mathnet  mathscinet  elib
    4. S. I. Novikov, “On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 238–244  mathnet  crossref  mathscinet  isi  elib
    5. S. I. Novikov, “Interpolyatsiya funktsiyami prostranstva Soboleva s minimalnoi $L_{p}$-normoi operatora Laplasa”, Tr. IMM UrO RAN, 21, no. 4, 2015, 212–222  mathnet  mathscinet  elib
    6. Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24, no. 3, 2018, 200–225  mathnet  crossref  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:122
    Full text:58

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020