RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2008, Volume 14, Number 3, Pages 38–42 (Mi timm38)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic behavior of the maximal zero of a polynomial orthogonal on a segment with a nonclassical weight

V. M. Badkov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: Let $\{p_n(t)\}_{n=0}^\infty$ be a system of algebraic polynomials orthonormal on the segment $[-1,1]$ with a weight $p(t)$; let $\{x_{n,\nu}^{(p)}\}_{\nu=1}^n$ be zeros of a polynomial $p_n(t)$ ($x_{n,\nu}^{(p)}=\cos\theta_{n,\nu}^{(p)}$; $0<\theta_{n,1}^{(p)}<\theta_{n,2}^{(p)}<…<\theta_{n,n}^{(p)}<\pi$). It is known that, for a wide class of weights $p(t)$ containing the Jacobi weight, the quantities $\theta_{n,1}^{(p)}$ and $1-x_{n,1}^{(p)}$ coincide in order with $n^{-1}$ and $n^{-2}$, respectively. In the present paper, we prove that, if the weight $p(t)$ has the form $p(t)=4(1-t^2)^{-1}\{\ln^2[(1+t)/(1-t)]+\pi^2\}^{-1}$, then the following asymptotic formulas are valid as $n\to\infty$:
$$ \theta_{n,1}^{(p)}=\frac{\sqrt2}{n\sqrt{\ln(n+1)}}[1+O(\frac1{\ln(n+1)})],\quad x_{n,1}^{(p)}=1-\frac1{n^2\ln(n+1)}+O(\frac1{\ln(n+1)}). $$


Full text: PDF file (235 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, 264, suppl. 1, S39–S43

Bibliographic databases:

UDC: 517.5
Received: 29.04.2008

Citation: V. M. Badkov, “Asymptotic behavior of the maximal zero of a polynomial orthogonal on a segment with a nonclassical weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 38–42; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S39–S43

Citation in format AMSBIB
\Bibitem{Bad08}
\by V.~M.~Badkov
\paper Asymptotic behavior of the maximal zero of a~polynomial orthogonal on a~segment with a~nonclassical weight
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 38--42
\mathnet{http://mi.mathnet.ru/timm38}
\elib{http://elibrary.ru/item.asp?id=11929743}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S39--S43
\crossref{https://doi.org/10.1134/S0081543809050034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000265511100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349139672}


Linking options:
  • http://mi.mathnet.ru/eng/timm38
  • http://mi.mathnet.ru/eng/timm/v14/i3/p38

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Badkov, “Pointwise estimates of polynomials orthogonal on a circle with respect to a weight not belonging to the spaces $L^r$ ($r>1$).”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S64–S77  mathnet  crossref  mathscinet  isi  elib
    2. V. M. Badkov, “Some properties of Jacobi polynomials orthogonal on a circle”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S49–S58  mathnet  crossref  isi  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:139
    Full text:56
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020