RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2008, Volume 14, Number 3, Pages 69–81 (Mi timm41)  

This article is cited in 3 scientific papers (total in 3 papers)

Two methods of characterizing the visibility of a moving point

V. I. Berdyshev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: Two methods are presented of determining the visibility (observability) of an object moving in space with an obstacle that hinders the motion and the perception of the object by an observer. The first method is based on taking into account the distance from the object to all possible observers. The second method uses not only the distance but also the size of the circular cone with the vertex at the observation point that contains a spherical neighborhood of the object. The directional differentiability of the functions characterizing the visibility of the object is established. The calculation of the derivatives is reduced to an extremal problem, for which “refinement” theorems are given.

Full text: PDF file (305 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, 264, suppl. 1, S72–S86

Bibliographic databases:

UDC: 519.62
Received: 19.05.2008

Citation: V. I. Berdyshev, “Two methods of characterizing the visibility of a moving point”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 69–81; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S72–S86

Citation in format AMSBIB
\Bibitem{Ber08}
\by V.~I.~Berdyshev
\paper Two methods of characterizing the visibility of a~moving point
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 69--81
\mathnet{http://mi.mathnet.ru/timm41}
\elib{http://elibrary.ru/item.asp?id=11929746}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S72--S86
\crossref{https://doi.org/10.1134/S008154380905006X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000265511100006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349093581}


Linking options:
  • http://mi.mathnet.ru/eng/timm41
  • http://mi.mathnet.ru/eng/timm/v14/i3/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. “Vitalii Ivanovich Berdyshev”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S1–S9  mathnet  crossref  isi
    2. V. I. Berdyshev, “Object visibility for an observer with inaccurately given coordinates”, Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S15–S22  mathnet  crossref  mathscinet  isi  elib
    3. V. I. Berdyshev, “Object visibility for a group of observers with inaccurately given coordinates”, Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S40–S47  mathnet  crossref  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:191
    Full text:64
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020