RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2010, Volume 16, Number 5, Pages 66–75 (Mi timm609)  

This article is cited in 5 scientific papers (total in 5 papers)

Analysis of sufficient optimality conditions with a set of Lyapunov type functions

V. A. Dykhta

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences

Abstract: For the classical optimal control problem with general endpoints constraints new variants of the Krotov–Carathéodory type global optimality conditions and sufficient conditions of the so-called Hamilton–Jacobi canonical optimality theory are proposed and compared. These sufficient optimality conditions are obtained and formulated by using some support set of nonsmooth Lyapunov-type functions, which are strongly monotone with respect to the control dynamic system. It is proved that the sufficient optimality conditions corresponding to the canonical theory are more efficient. Some properties of Lyapunov functions from the support set are investigated.

Keywords: sufficient optimality conditions, Lyapunov functions, Hamilton–Jacobi inequalities, support set.

Full text: PDF file (183 kB)
References: PDF file   HTML file
UDC: 517.977
Received: 06.04.2010

Citation: V. A. Dykhta, “Analysis of sufficient optimality conditions with a set of Lyapunov type functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 5, 2010, 66–75

Citation in format AMSBIB
\Bibitem{Dyk10}
\by V.~A.~Dykhta
\paper Analysis of sufficient optimality conditions with a~set of Lyapunov type functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 5
\pages 66--75
\mathnet{http://mi.mathnet.ru/timm609}
\elib{https://elibrary.ru/item.asp?id=15265833}


Linking options:
  • http://mi.mathnet.ru/eng/timm609
  • http://mi.mathnet.ru/eng/timm/v16/i5/p66

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Dykhta, S. P. Sorokin, “Positional solutions of Hamilton–Jacobi equations in control problems for discrete-continuous systems”, Autom. Remote Control, 72:6 (2011), 1184–1198  mathnet  crossref  mathscinet  zmath  isi
    2. V. A. Dykhta, S. P. Sorokin, “Hamilton–Jacobi inequalities and the optimality conditions in the problems of control with common end constraints”, Autom. Remote Control, 72:9 (2011), 1808–1821  mathnet  crossref  mathscinet  zmath  isi
    3. S. P. Sorokin, “Monotonnye funktsii tipa Lyapunova i usloviya globalnoi optimalnosti dlya zadach upravleniya diskretnymi sistemami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 4:3 (2011), 132–145  mathnet
    4. V. A. Dykhta, “Positional strengthenings of the maximum principle and sufficient optimality conditions”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 43–57  mathnet  crossref  mathscinet  isi  elib
    5. V. G. Antonik, V. A. Srochko, “Optimality conditions of the maximum principle type in bilinear control problems”, Comput. Math. Math. Phys., 56:12 (2016), 2023–2034  mathnet  crossref  crossref  isi  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:216
    Full text:73
    References:30
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021