RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2010, Volume 16, Number 4, Pages 264–271 (Mi timm660)  

This article is cited in 2 scientific papers (total in 2 papers)

New generalization of orthogonal wavelet bases

E. A. Pleshcheva

Ural State University

Abstract: Wavelet bases are constructed for $n$ scaling functions. Fast algorithms for computing coefficients of expanding a function over such bases are presented.

Keywords: multiresolution analysis, wavelets, scaling functions.

Full text: PDF file (170 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, 273, suppl. 1, S124–S132

Bibliographic databases:

UDC: 517.5
Received: 20.06.2010

Citation: E. A. Pleshcheva, “New generalization of orthogonal wavelet bases”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 264–271; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S124–S132

Citation in format AMSBIB
\Bibitem{Ple10}
\by E.~A.~Pleshcheva
\paper New generalization of orthogonal wavelet bases
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 264--271
\mathnet{http://mi.mathnet.ru/timm660}
\elib{http://elibrary.ru/item.asp?id=15318507}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S124--S132
\crossref{https://doi.org/10.1134/S0081543811050130}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305481300013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959211836}


Linking options:
  • http://mi.mathnet.ru/eng/timm660
  • http://mi.mathnet.ru/eng/timm/v16/i4/p264

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Pleshcheva, “Biorthogonal bases of spaces of $n$-separate multiresolution analysis and multiwavelets”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 145–152  mathnet  crossref  crossref  mathscinet  isi  elib
    2. E. A. Plescheva, “Priblizhenie funktsii $n$-razdelnymi vspleskami v prostranstvakh $L^p(\mathbb{R}), 1 \leq p \leq \infty$”, Tr. IMM UrO RAN, 25, no. 2, 2019, 167–176  mathnet  crossref  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:138
    Full text:52
    References:29
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019