|
This article is cited in 5 scientific papers (total in 5 papers)
Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator
E. V. Strelkova, V. T. Shevaldin Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
We construct local $\mathcal L$-splines with uniform nodes that preserve subsets from the kernel of a linear differential operator $\mathcal L$ of order $r$ with constant real coefficients and pairwise distinct roots of the characteristic polynomial. Pointwise estimates are found for the error of approximation by the constructed $\mathcal L$-splines on classes of functions defined by differential operators of orders smaller than $r$.
Keywords:
approximation, local $\mathcal L$-splines, differential operator.
Full text:
PDF file (172 kB)
References:
PDF file
HTML file
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, 273, suppl. 1, S133–S141
Bibliographic databases:
UDC:
519.65 Received: 01.02.2010
Citation:
E. V. Strelkova, V. T. Shevaldin, “Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 272–280; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S133–S141
Citation in format AMSBIB
\Bibitem{StrShe10}
\by E.~V.~Strelkova, V.~T.~Shevaldin
\paper Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a~differential operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 272--280
\mathnet{http://mi.mathnet.ru/timm661}
\elib{https://elibrary.ru/item.asp?id=15318508}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S133--S141
\crossref{https://doi.org/10.1134/S0081543811050142}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305481300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959236886}
Linking options:
http://mi.mathnet.ru/eng/timm661 http://mi.mathnet.ru/eng/timm/v16/i4/p272
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. V. Strelkova, V. T. Shevaldin, “Form preservation under approximation by local exponential splines of an arbitrary order”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 171–179
-
Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184
-
E. V. Strelkova, V. T. Shevaldin, “Local exponential splines with arbitrary knots”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 189–194
-
E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217
-
E. V. Strelkova, V. T. Shevaldin, “O ravnomernykh konstantakh Lebega lokalnykh trigonometricheskikh splainov tretego poryadka”, Tr. IMM UrO RAN, 22, no. 2, 2016, 245–254
|
Number of views: |
This page: | 168 | Full text: | 65 | References: | 37 | First page: | 2 |
|