RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2011, Volume 17, Number 2, Pages 271–299 (Mi timm712)  

This article is cited in 3 scientific papers (total in 3 papers)

Optimal growth in a two-sector economy facing an expected random shock

Sergey Aseevab, Konstantin Besova, Simon-Erik Ollusc, Tapio Palokangasd

a Steklov Mathematical Institute, Moscow, Russia
b International Institute for Applied Systems Analysis, Laxenburg, Austria
c Fortum Corporation, Fortum, Finland
d University of Helsinki and HECER, Helsinki, Finland

Abstract: We develop an optimal growth model of an open economy that uses both an old (“dirty” or “polluting”) technology and a new (“clean”) technology simultaneously. A planner of the economy expects the occurrence of a random shock that increases sharply abatement costs in the dirty sector. Assuming that the probability of an exogenous environmental shock is distributed according to the exponential law, we use Pontryagins maximum principle to find the optimal investment and consumption policies for the economy.

Keywords: dynamic optimization, optimal control, Pontryagin's maximum principle, endogenous growth, climate change, random shock, government policy, technological development.

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, 276, suppl. 1, S4–S34

Bibliographic databases:

UDC: 517.977
Received: 04.08.2010
Language:

Citation: Sergey Aseev, Konstantin Besov, Simon-Erik Ollus, Tapio Palokangas, “Optimal growth in a two-sector economy facing an expected random shock”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 2, 2011, 271–299; Proc. Steklov Inst. Math. (Suppl.), 276, suppl. 1 (2012), S4–S34

Citation in format AMSBIB
\Bibitem{AseBesOll11}
\by Sergey~Aseev, Konstantin~Besov, Simon-Erik~Ollus, Tapio~Palokangas
\paper Optimal growth in a~two-sector economy facing an expected random shock
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 2
\pages 271--299
\mathnet{http://mi.mathnet.ru/timm712}
\elib{https://elibrary.ru/item.asp?id=17870038}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 276
\issue , suppl. 1
\pages S4--S34
\crossref{https://doi.org/10.1134/S0081543812020022}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000305482900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859336903}


Linking options:
  • http://mi.mathnet.ru/eng/timm712
  • http://mi.mathnet.ru/eng/timm/v17/i2/p271

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. M. Aseev, K. O. Besov, A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 67:2 (2012), 195–253  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Proc. Steklov Inst. Math., 284 (2014), 50–80  mathnet  crossref  crossref  isi  elib  elib
    3. Y.-X. Cui, L. Sun, L.-H. Sui, X.-M. Xu, J. Kang, “Study on Truncated Form of the Random Shock Model”, International Conference on Artificial Intelligence and Computer Science (AICS 2016), Destech Transactions on Computer Science and Engineering, Destech Publications, Inc, 2016, 205–209  isi
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:456
    Full text:74
    References:43
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020