RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2011, Volume 17, Number 4, Pages 88–91 (Mi timm753)  

This article is cited in 1 scientific paper (total in 1 paper)

Finite groups with independent abelian subgroups

A. Kh. Zhurtov, A. A. Tsirkhov

Kabardino-Balkar State University

Abstract: We describe finite groups all of whose abelian subgroups are independent. A subgroup $H$ of a group $G$ is called independent if $N_G(U)\leq N_G(H)$ for any nontrivial subgroup $U$ of $H$.

Keywords: finite group, independent subgroup, normalizer embeddability.

Full text: PDF file (126 kB)
References: PDF file   HTML file
UDC: 512.542
Received: 16.06.2011

Citation: A. Kh. Zhurtov, A. A. Tsirkhov, “Finite groups with independent abelian subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 88–91

Citation in format AMSBIB
\Bibitem{ZhuTsi11}
\by A.~Kh.~Zhurtov, A.~A.~Tsirkhov
\paper Finite groups with independent abelian subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 88--91
\mathnet{http://mi.mathnet.ru/timm753}
\elib{http://elibrary.ru/item.asp?id=17870426}


Linking options:
  • http://mi.mathnet.ru/eng/timm753
  • http://mi.mathnet.ru/eng/timm/v17/i4/p88

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Tsirkhov, “Kharakterizatsiya konechnykh grupp s nezavisimymi abelevymi podgruppami”, Vladikavk. matem. zhurn., 15:4 (2013), 76–81  mathnet
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:164
    Full text:47
    References:27
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019