RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Тр. ИММ УрО РАН, 2012, том 18, номер 1, страницы 20–33 (Mi timm776)  

Some new classes of inverse coefficient problems in nonlinear mechanics

A. Kh. Khasanov

Department of Mathematics and Computer Science, Izmir University, Izmir, Turkey

Аннотация: The present study deals with the following two types of inverse problems governed by nonlinear PDEs, and related to determination of unknown properties of engineering materials based on boundary/surface measured data. The first inverse problem consists of identifying the unknown coefficient $g(\xi^2)$ (plasticity function) in the nonlinear differential equation of torsional creep $-(g(|\nabla u|^2)u_{x_1})_{x_1}-(g(|\nabla u|^2)u_{x_2})_{x_2}= 2\phi$, $x\in\Omega\subset\mathbb R^2$, from the torque (or torsional rigidity) $\mathcal T(\phi)$, given experimentally. The second class of inverse problems is related to identification of the unknown coefficient $g(\xi^2)$ in the nonlinear bending equation $Au\equiv(g(\xi^2(u))(u_{x_1x_1}+u_{x_2x_2}/2))_{x_1x_1}+(g(\xi^2(u))u_{x_1x_2})_{x_1x_2}+(g(\xi^2(u))(u_{x_2x_2}+u_{x_1x_1}/2))_{x_2x_2}=F(x)$, $x\in\Omega\subset\mathbb R^2$. The boundary measured data here is assumed to be the deflections $w_i[\tau_k]:=w(\lambda_i;\tau_k)$, measured during the quasi-static bending process, given by the parameter $\tau_k$, $k=\overline{1,K}$, at some points $\lambda_i=(x_1^{(i)},x_2^{(i)})$, $i=\overline{1,M}$, of a plate. Based on obtained continuity property of the direct problem solution with respect to coefficients, and compactness of the set of admissible coefficients, an existence of quasi-solutions of the considered inverse problems are proved. Some numerical results, useful from the points of view of nonlinear mechanics and computational material science, are demonstrated. Keywords: inverse coefficient problem, material properties, quasisolution method.

Ключевые слова: inverse coefficient problem, material properties, quasisolution method.

Полный текст: PDF файл (264 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:
Тип публикации: Статья
УДК: 517.988.68
Поступила в редакцию: 15.07.2011
Язык публикации: английский

Образец цитирования: A. Kh. Khasanov, “Some new classes of inverse coefficient problems in nonlinear mechanics”, Тр. ИММ УрО РАН, 18, no. 1, 2012, 20–33

Цитирование в формате AMSBIB
\RBibitem{Kha12}
\by A.~Kh.~Khasanov
\paper Some new classes of inverse coefficient problems in nonlinear mechanics
\serial Тр. ИММ УрО РАН
\yr 2012
\vol 18
\issue 1
\pages 20--33
\mathnet{http://mi.mathnet.ru/timm776}
\elib{http://elibrary.ru/item.asp?id=17358675}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/timm776
  • http://mi.mathnet.ru/rus/timm/v18/i1/p20

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Труды Института математики и механики УрО РАН
    Просмотров:
    Эта страница:173
    Полный текст:41
    Литература:20
    Первая стр.:3
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019