RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2012, Volume 18, Number 1, Pages 34–41 (Mi timm777)  

This article is cited in 3 scientific papers (total in 3 papers)

A note on the modulus of continuity for ill-posed problems in Hilbert space

Bernd Hofmanna, Peter Mathéb

a Department of Mathematics, Chemnitz University of Technology, Chemnitz, Germany
b Weierstraß Institute for Applied Analysis and Stochastics, Berlin, Germany

Abstract: The authors study linear ill-posed operator equations in Hilbert space. Such equations become conditionally well-posed by imposing certain smoothness assumptions, often given relative to the operator which governs the equation. Usually this is done in terms of general source conditions. Recently smoothness of an element was given in terms of properties of the distribution function of this element with respect to the self-adjoint associate of the underlying operator. In all cases the original ill-posed problem becomes well-posed, and properties of the corresponding modulus of continuity are of interest, specifically whether this is a concave function. The authors extend previous concavity results of a function related to the modulus of continuity, and obtained for compact operators in B. Hofmann, P. Mathé, and M. Schieck, Modulus of continuity for conditionally stable ill-posed problems in Hilbert space, J. Inverse Ill-Posed Probl. 16 (2008), no. 6, 567–585, to the general case of bounded operators in Hilbert space, and for recently introduced smoothness classes.

Keywords: ill-posed, source conditions, individual smoothness, modulus of continuity.

Full text: PDF file (159 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.983.54
Received: 22.03.2011
Language: English

Citation: Bernd Hofmann, Peter Mathé, “A note on the modulus of continuity for ill-posed problems in Hilbert space”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 34–41

Citation in format AMSBIB
\Bibitem{HofMat12}
\by Bernd~Hofmann, Peter~Math\'e
\paper A note on the modulus of continuity for ill-posed problems in Hilbert space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 34--41
\mathnet{http://mi.mathnet.ru/timm777}
\elib{http://elibrary.ru/item.asp?id=17358676}


Linking options:
  • http://mi.mathnet.ru/eng/timm777
  • http://mi.mathnet.ru/eng/timm/v18/i1/p34

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tautenhahn U., Haemarik U., Hofmann B., Shao Y., “Conditional Stability Estimates for Ill-Posed PDE Problems by Using Interpolation”, Numer. Funct. Anal. Optim., 34:12 (2013), 1370–1417  crossref  mathscinet  zmath  isi  elib  scopus
    2. Bot R.I., Hofmann B., Mathe P., “Regularizability of Ill-Posed Problems and the Modulus of Continuity”, Z. Anal. ihre. Anwend., 32:3 (2013), 299–312  crossref  mathscinet  zmath  isi  scopus
    3. Cheng J., Hofmann B., Lu Sh., “the Index Function and Tikhonov Regularization For Ill-Posed Problems”, J. Comput. Appl. Math., 265 (2014), 110–119  crossref  mathscinet  zmath  isi  elib  scopus
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:217
    Full text:27
    References:21
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019