RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Inst. Mat. i Mekh. UrO RAN, 2012, Volume 18, Number 1, Pages 281–288 (Mi timm797)  

This article is cited in 9 scientific papers (total in 9 papers)

On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions

V. P. Tanana, A. B. Bredikhina, T. S. Kamaltdinova

South Ural State University

Abstract: An inverse Cauchy problem is solved by the nonlinear projection regularization method under the assumption that the required solution is smooth.

Keywords: operator equations, regularization, method, error estimate, ill-posed problem.

Full text: PDF file (152 kB)
References: PDF file   HTML file
UDC: 517.948
Received: 16.04.2011

Citation: V. P. Tanana, A. B. Bredikhina, T. S. Kamaltdinova, “On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 281–288

Citation in format AMSBIB
\Bibitem{TanBreKam12}
\by V.~P.~Tanana, A.~B.~Bredikhina, T.~S.~Kamaltdinova
\paper On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 281--288
\mathnet{http://mi.mathnet.ru/timm797}
\elib{https://elibrary.ru/item.asp?id=17358696}


Linking options:
  • http://mi.mathnet.ru/eng/timm797
  • http://mi.mathnet.ru/eng/timm/v18/i1/p281

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tanana V.P., Kamaltdinova T.S., “Ob otsenke pogreshnosti v tochke pri reshenii obratnykh zadach”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. seriya: vychislitelnaya matematika i informatika, 2:1 (2013), 90–95  mathscinet  elib
    2. T. S. Kamaltdinova, “Priblizhennoe reshenie obratnoi granichnoi zadachi dlya uravneniya teploprovodnosti nelineinym metodom proektsionnoi regulyarizatsii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 26–33  mathnet
    3. V. P. Tanana, T. S. Kamaltdinova, “Ob otsenke pogreshnosti v tochke pri reshenii obratnykh zadach”, Vestn. YuUrGU. Ser. Vych. matem. inform., 2:1 (2013), 90–95  mathnet  crossref
    4. E. V. Tabarintseva, “O reshenii odnoi obratnoi zadachi dlya nelineinogo differentsialnogo uravneniya v klasse kusochno-gladkikh funktsii”, Sib. elektron. matem. izv., 14 (2017), 199–209  mathnet  crossref
    5. V. P. Tanana, “One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems”, Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 155–163  mathnet  crossref  crossref  isi  elib
    6. V. P. Tanana, A. A. Ershova, “O reshenii obratnoi granichnoi zadachi dlya kompozitnykh materialov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 474–488  mathnet  crossref  elib
    7. Tanana V.R., “A Comparison of Error Estimates At a Point and on a Set When Solving Ill-Posed Problems”, J. Inverse Ill-Posed Probl., 26:4 (2018), 541–550  crossref  mathscinet  zmath  isi  scopus
    8. Tanana V.P. Sidikova I A., “On Improving An Error Estimate For a Nonlinear Projective Regularization Method When Solving An Inverse Boundary Value Problem”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 53–74  crossref  isi
    9. A. I. Sidikova, “The study of an inverse boundary problem for the heat conduction equation”, Num. Anal. Appl., 12:1 (2019), 70–86  mathnet  crossref  crossref  isi  elib
  • Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Number of views:
    This page:242
    Full text:77
    References:38
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021