|
This article is cited in 9 scientific papers (total in 9 papers)
On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
V. P. Tanana, A. B. Bredikhina, T. S. Kamaltdinova South Ural State University
Abstract:
An inverse Cauchy problem is solved by the nonlinear projection regularization method under the assumption that the required solution is smooth.
Keywords:
operator equations, regularization, method, error estimate, ill-posed problem.
Full text:
PDF file (152 kB)
References:
PDF file
HTML file
UDC:
517.948 Received: 16.04.2011
Citation:
V. P. Tanana, A. B. Bredikhina, T. S. Kamaltdinova, “On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 281–288
Citation in format AMSBIB
\Bibitem{TanBreKam12}
\by V.~P.~Tanana, A.~B.~Bredikhina, T.~S.~Kamaltdinova
\paper On an error estimate for an approximate solution for an inverse problem in the class of piecewise smooth functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 281--288
\mathnet{http://mi.mathnet.ru/timm797}
\elib{https://elibrary.ru/item.asp?id=17358696}
Linking options:
http://mi.mathnet.ru/eng/timm797 http://mi.mathnet.ru/eng/timm/v18/i1/p281
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Tanana V.P., Kamaltdinova T.S., “Ob otsenke pogreshnosti v tochke pri reshenii obratnykh zadach”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. seriya: vychislitelnaya matematika i informatika, 2:1 (2013), 90–95
-
T. S. Kamaltdinova, “Priblizhennoe reshenie obratnoi granichnoi zadachi dlya uravneniya teploprovodnosti nelineinym metodom proektsionnoi regulyarizatsii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 26–33
-
V. P. Tanana, T. S. Kamaltdinova, “Ob otsenke pogreshnosti v tochke pri reshenii obratnykh zadach”, Vestn. YuUrGU. Ser. Vych. matem. inform., 2:1 (2013), 90–95
-
E. V. Tabarintseva, “O reshenii odnoi obratnoi zadachi dlya nelineinogo differentsialnogo uravneniya v klasse kusochno-gladkikh funktsii”, Sib. elektron. matem. izv., 14 (2017), 199–209
-
V. P. Tanana, “One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems”, Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 155–163
-
V. P. Tanana, A. A. Ershova, “O reshenii obratnoi granichnoi zadachi dlya kompozitnykh materialov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 474–488
-
Tanana V.R., “A Comparison of Error Estimates At a Point and on a Set When Solving Ill-Posed Problems”, J. Inverse Ill-Posed Probl., 26:4 (2018), 541–550
-
Tanana V.P. Sidikova I A., “On Improving An Error Estimate For a Nonlinear Projective Regularization Method When Solving An Inverse Boundary Value Problem”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 53–74
-
A. I. Sidikova, “The study of an inverse boundary problem for the heat conduction equation”, Num. Anal. Appl., 12:1 (2019), 70–86
|
Number of views: |
This page: | 242 | Full text: | 77 | References: | 38 | First page: | 7 |
|